Date:_

Stretches of Sinusoidal Functions

$$f(x) = asin[k(x-d)] + c \text{ and } f(x) = acos[k(x-d)] + c$$

Vertical Stretches: Investigating for *a*

Recall: y = af(x) is the image of y = f(x) under a transformation which causes a **vertical stretch**.

Example 1: Graph $y = \sin\theta$ and $y = 2\sin\theta$, for $0^{\circ} \le \theta \le 360^{\circ}$.

θ	0°	90°	180°	270°	360°
$y = \sin \theta$					
$y = 2 \sin \theta$					

For $y = 2 \sin \theta$,

- 1. What coordinate is affected?
- 2. What points are unaffected (invariant)?
- 3. What is amplitude, a, of the function?
- 4. What is the period?
- 5. What is the equation of the axis of the curve?
- 6. State the domain and range.

Example 2: Graph $y = \frac{1}{2}\sin\theta$, for $0^{\circ} \le \theta \le 360^{\circ}$ on the above grid.

1	θ	0.	90°	180°	270°	360°
	$y = \frac{1}{2}\sin\theta$					

SUMMARY,

For a > 1, the graph is **stretched** vertically (expanded) by a factor of a.

For 0 < a < 1, the graph is **compressed** vertically by a factor of a.

The amplitude of each function $y = a \sin \theta$ and $y = a \cos \theta$ is a.

Date:_

Horizontal Stretches: Investigating for *k*

Recall: y = f(kx) is the image of y = f(x) under a transformation which a causes a **horizontal stretch.**

Mapping: $(x, y) \rightarrow$

Example 1: Graph one cycle of $y = \sin \theta$ and $y = \sin 2\theta$ on the grid below using mapping notation.

For $y = \sin 2\theta$,

- 1. What coordinate is affected?
- 2. What points are unaffected (invariant)?
- 3. What is the amplitude, *a*, of the function?
- 4. What is the period?
- 5. What is the equation of the axis of the curve?

SUMMARY,

Recall: x says something yet does the exact opposite.

for k > 1, the graph is horizontally compressed by a factor of 1/k

for 0 < k < 1, the graph is horizontally stretched (expanded) by a factor of 1/k

The value of k determines the number of degrees in the period of the graph. To determine the period of the trigonometric function, divide the period of the base curve by k.

$$y = \sin 2\theta$$
 has period $\frac{360}{k}$

$$y = \cos 2\theta$$
 has period $\frac{360}{k}$

e.g. $y = \sin 2\theta$ has period $\frac{360}{2} = 180$

Date:__

Ex2: $y = \sin 3\theta$ has period:

Ex3: $y = \sin \frac{1}{3}\theta$ has period:

Ex4: Determine the equation of the sine function with amplitude 4 and period 45°. State the domain and range of one cycle.

Ex5: Sketch one cycle of $y = 3\cos\frac{1}{2}\theta$. State the amplitude, period, domain, and range of one cycle of the function.

