MCR3U1

Date:

\qquad

Stretches of Sinusoidal Functions

$$
f(x)=\boldsymbol{a s i n}[k(x-d)]+c \text { and } f(x)=\boldsymbol{a c o s}[k(x-\boldsymbol{d})]+c
$$

Vertical Stretches: Investigating for \boldsymbol{a}

Recall: $y=\boldsymbol{a} f(x)$ is the image of $y=f(x)$ under a transformation which causes a vertical stretch.
Example 1: Graph $y=\sin \theta$ and $y=2 \sin \theta$, for $0^{\circ} \leq \theta \leq 360^{\circ}$.

θ	0°	90°	180°	270°	360°
$y=\sin \theta$	0	1	0	-1	0
$y=2 \sin \theta$	0	2	0	-2	0

For $y=2 \sin \theta$,

1. What coordinate is affected? y coordinate
2. What points are unaffected (invariant)? $0,180,360^{\circ}$
3. What is amplitude, a, of the function? 2
4. What is the period? 360
5. What is the equation of the axis of the curve? $\frac{\max +\min }{2}=\frac{2+(-2)}{2}=0 \quad y=0$
6. State the domain and range.
$D:\{x \in R\}$

$$
R:\{y \in R \mid-2, y \leq 2\}
$$

Example 2: Graph $y=\frac{1}{2} \sin \theta$, for $0^{\circ} \leq \theta \leq 360^{\circ}$ on the above grid.

θ	0°	90°	180°	270°	360°
$y=\frac{1}{2} \sin \theta$	\boldsymbol{O}	0.5	$\boldsymbol{0}$	-0.5	0

SUMMARY,

For $a>1$, the graph is stretched vertically (expanded) by a factor of a. For $0<a<1$, the graph is compressed vertically by a factor of a.
$a=$ amplitude The amplitude of each function $y=a \sin \theta$ and $y=\operatorname{acos} \theta$ is a.)

MCR3U1

Date:

\qquad
Day 5: Transformations of Sinusoidal Functions I
Chapter 6: Sinusoidal Functions

Horizontal Stretches: Investigating for \boldsymbol{k}

Recall: $y=f(\boldsymbol{k} x)$ is the image of $y=f(x)$ under a transformation which a causes a horizontal stretch.
Mapping: $(x, y) \rightarrow\left(\frac{x}{k}, y\right)$
Example 1: Graph one cycle of $y=\sin \theta$ and $y=\sin 2 \theta$ on the grid below using mapping notation.

$$
(90,1) \longrightarrow\left(\frac{90}{2}, 0\right)=(45,0)
$$

For $y=\sin 2 \theta$,

1. What coordinate is affected?
2. What points are unaffected (invariant)? y int.
3. What is the amplitude, a, of the function? \mathcal{L}
4. What is the period? 180
5. What is the equation of the axis of the curve?

$$
y=0
$$

SUMMARY,

Recall: x says something yet does the exact opposite.

for $k>1$, the graph is horizontally compressed by a factor of $1 / k$
for $0<k<1$, the graph is horizontally stretched (expanded) by a factor of $1 / k$
The value of k determines the number of degrees in the period of the graph. To determine the period of the trigonometric function, divide the period of the base curve by k.

$$
y=\sin 2 \theta \text { has period } \frac{360}{k}
$$

$$
y=\cos 2 \theta \text { has period } \frac{360}{k}
$$

e.g. $y=\sin 2 \theta$ has period $\frac{360}{2}=180$

Ex2: $y=\sin 3 \theta$ has period:

$$
\text { Period }=\frac{360}{3}=120^{\circ}
$$

Ex3: $y=\sin \frac{1}{3} \theta$ has period:

$$
\text { Period }=\frac{360}{\frac{1}{3}}=360 \times 3=1080^{\circ}
$$

Ex4: Determine the equation of the sine function with amplitude 4 and period 45°. State the domain and range of one cycle.

$$
\begin{array}{lll}
y=9 \sin k \theta & \text { Period }=\frac{360}{k} & 45=\frac{360}{k} \Rightarrow k=\frac{360}{45}=8 \\
y=4 \sin 8 \theta & D=\{\theta \in \mathbb{R}\} & R=\left\{\left.y \in \mathbb{R}\right|^{-4} y \leqslant 4\right\}
\end{array}
$$

Ex5: Sketch one cycle of $y=3 \cos \frac{1}{2} \theta$. State the amplitude, period, domain, and range of one cycle of the function.

