PERIMETER AND AREA RELATIONSHIPS OF A RECTANGLE INVESTIGATION

<u>Optimization</u> is the process of finding values that make a given quantity the greatest (or least) possible given certain conditions.

FIXED PELIMETEL Problem 1: Sarah needs to find the dimensions that will maximize the rectangular area of an enclosure with a perimeter of 24m.

Rectangle	Width (m)	Length (m)	Perimeter (m)	Area (m ²)
1	1	11	24	11
2	2	0	24	20
3	3	٩	24	27
4	ц	8	24	32
5	5	7	24	35
$\overline{(6)}$	6	6	24	36
7	7	5	24	35
8	8	4	24	32
9	9	3	24	27
10	10	2	24	20
11	11		24	

What are the dimensions of the rectangle with the maximum or optimal area? 6×6

The maximum area is _36_____ The shape of the rectangle is ______

How can you predict the maximum area if you know the perimeter?

If the shape is a squar, i + i = 11 maximize the Ore. Predict the dimensions of a rectangle with a maximum area that has a perimeter of 60 m:

 $P = 4a \qquad X = a^{2}$ $\frac{60}{4} = \frac{4a}{4} \qquad = 15^{2}$ $a = 15m \qquad = 225m^{2}$

•

<u>Problem 2</u>: Jeff needs to find the dimensions that will minimize the perimeter of a rectangular enclosure that has an area of 36 m^2 .

Rectangle	Width (m)	Length (m)	Perimeter (m)	Area (m ²)
1	1	36	2(1+36) = 74	36
2	2	18	2(2+18)= 40	36
3	3	12	2(3+12)= 30	36
4	4	9	2(4+9)=26	36
5	5	7.2	2(517.2)= 24.4	36
6	6	6	2(6+6) = 24	36
7	7	5.14	2(7+5.14) = 24.3	36
8	8	4.5	2(8+4.5) = 25	36
9	9	4	2(9+4)=26	36

What are the dimensions of the rectangle with the minimum or optimal perimeter? 6×6

The minimum perimeter is 24

The shape of the rectangle is ______

How can you predict the minimum perimeter if you know the area?

It il be a square; therefore, I'd find one of the dimensions by square roofing the oner. To get the perimeter, J'd multiply it by 4.

Predict the dimensions of a rectangle with a minimum perimeter and an area of 64 m^2 :

$$A=64$$

$$X = X^{2}$$

$$P = 4x$$

$$F = 4 \cdot 8$$

$$= 4 \cdot 8$$

$$= 32m$$

Rectangle	Width (m)	Length (m)	Perimeter (m)	Area (m ²)
1	1	14	16	4
2	2	12	16	24
3	3	10	16	30
4	4	8	16	32
5	5	6	16	30
6	6	4	16	24
7	7	2	16	14

<u>Problem 3</u>: Jessica has 16 m of fencing to enclose a dog pen against the side of a house. She wants to maximize the area for her dog, while using only the 16 m of fencing,

What are the dimensions of the rectangle with the maximum or optimal area? 8x 4

The maximum area is $___lb$ The length is 2 times the width.

How can you predict the maximum area if you know the perimeter of an area enclosed on 3 sides?

 $\omega \bigsqcup_{2\omega} \omega \qquad \begin{array}{c} P = 4\omega \\ P = \omega \\ \overline{q} = \omega \end{array}$

Predict the dimensions of a rectangle with maximum area and a perimeter of 60 m, enclosed on only 3 sides. State the dimensions.

Questions

1. An inbox tray has 3 walls and an open side on one of the longer sides. Determine the maximum area of the tray if all three walls total to a length of 812 mm.

$$\omega \begin{bmatrix} \omega & P = 4\omega \\ \frac{812}{4} = \frac{4\omega}{4} \end{bmatrix} \Longrightarrow \begin{bmatrix} 203 & A = 203(406) \\ 203 & = 92418 \text{ mm} \end{bmatrix}$$

2. The perimeter of a rectangular piece of cardboard is 46 centimetres. Determine the dimensions that maximize the area.

$$x + \frac{1}{x} = \frac{4x}{y}$$

$$(x = 11, \tau)$$

$$P = 4x$$

$$\therefore The dimensions are 11.5 \times 11.5$$

$$(x = 11, \tau)$$

3. The maximum area of a fenced in pool deck is 1024 m². Determine the length of fencing that is required.

$$A = x^{2}$$

$$P = 4.32$$

$$F = 128$$

$$The fencing will be 128m$$

4. Three sides of a look-out deck have a railing, while the fourth side is open. Determine the maximum area if there is 648 cm of railing.

5. The area of a rectangular box is 722 500 mm². Determine the dimensions that minimize the perimeter.

$$x = 722500$$
... The dimensions are 850 x 850
x = 850
x = 850