PERIMETER AND AREA RELATIONSHIPS OF A RECTANGLE INVESTIGATION

Optimization is the process of finding values that make a given quantity the greatest (or least) possible given certain conditions.

$$
\text { F }(x E D \text { PERIMETER }
$$

Problem 1: Sarah needs to find the dimensions that will maximize the rectangular area of an enclosure with a perimeter of 24 m .

Rectangle	Width (\mathbf{m})	Length (\mathbf{m})	Perimeter (\mathbf{m})	Area $\left(\mathbf{m}^{2}\right)$
1	1	11	24	11
2	2	10	24	20
3	3	9	24	27
4	4	8	24	32
5	5	7	24	35
6	6	6	24	36
7	7	5	24	35
8	8	4	24	32
9	9	3	24	27
10	10	2	24	20
11	11	1	24	11

What are the dimensions of the rectangle with the maximum or optimal area? \qquad 6×6

The maximum area is \qquad 36

The shape of the rectangle is square

How can you predict the maximum area if you know the perimeter?
If the shape is a square, it 'll maximize the ares.
Predict the dimensions of a rectangle with a maximum area that has a perimeter of 60 m :

$$
\begin{array}{rlrl}
P & =4 a & A & =a^{2} \\
\frac{60}{4} & =\frac{4 a}{4} & & =15^{2} \\
a & =15 \mathrm{~m} & & =225 \mathrm{~m}^{2}
\end{array}
$$

Problem 2: Jeff needs to find the dimensions that will minimize the perimeter of a rectangular enclosure that has an area of $36 \mathrm{~m}^{2}$.

Rectangle	Width (\mathbf{m})	Length (\mathbf{m})	Perimeter (\mathbf{m})	Area $\left(\mathbf{m}^{2}\right)$
1	1	36	$2(1+36)=74$	36
2	2	18	$2(2+18)=40$	36
3	3	12	$2(3+12)=30$	36
4	4	9	$2(4+9)=26$	36
5	5	7.2	$2(5+7.2)=24.4$	36
6	6	6	$2(6+6)=24$	36
7	7	5.14	$2(7+5.14)=24.3$	36
8	8	4.5	$2(8+4.5)=25$	36
9	9	4	$2(9+4)=26$	36

What are the dimensions of the rectangle with the minimum or optimal perimeter? \qquad
The minimum perimeter is \qquad 24 The shape of the rectangle is \qquad square

How can you predict the minimum perimeter if you know the area?
It 'll be a square; therefore, Id find ore of the dimensions by square rooting the area. To get the perimeter, Ind multiply it by 4 .
Predict the dimensions of a rectangle with $\underbrace{\text { a minimum perimeter }}$ and an area of $64 \mathrm{~m}^{2}$:

$$
\begin{aligned}
& A=64 \\
& x+\frac{1}{x}=x^{2} \\
& 64=x^{2} \\
& \frac{8}{4}=x
\end{aligned}
$$

Problem 3: Jessica has 16 m of fencing to enclose a dog pen against the side of a house. She wants to maximize the area for her dog, while using only the 16 m of fencing,

Rectangle	Width (m)	Length (m)	Perimeter (m)	Area (m ${ }^{2}$)
1	1	14	16	14
2	2	12	16	24
3	3	10	16	30
4	4	8	16	32
5	5	6	16	30
6	6	4	16	24
7	7	2	16	14

What are the dimensions of the rectangle with the maximum or optimal area? $\quad 8 \times 4$ The maximum area is 16 The length is 2 times the width.

How can you predict the maximum area if you know the perimeter of an area enclosed on 3 sides?

Predict the dimensions of a rectangle with maximum area and a perimeter of 60 m , enclosed on only 3 sides. State the dimensions.
$P=4 \omega$
$60=4 \omega$
$15=0$

$L=30$
$\omega=15$

Questions

1. An inbox tray has 3 walls and an open side on one of the longer sides. Determine the maximum area of the tray if all three walls total to a length of 812 mm .
$\left.\omega\right|_{2 \omega} ^{\cdots \cdots} \mid \omega$ $\begin{aligned} P & =4 \omega \\ \frac{812}{4} & =\frac{4 \omega}{4} \\ 203 & =\omega\end{aligned}$

$A=203(406)$
$=82,418 \mathrm{~mm}$
2. The perimeter of a rectangular piece of cardboard is 46 centimetres. Determine the dimensions that maximize the area.

3. The maximum area of a fenced in pool deck is $1024 \mathrm{~m}^{2}$. Determine the length of fencing that is

$$
\begin{array}{rl}
A=x^{2} \\
\underbrace{1}_{x} \times \frac{1024}{}=x^{2} & P=4.32 \\
x=32
\end{array} \quad \begin{aligned}
P & =128
\end{aligned}
$$

4. Three sides of a look-out deck have a railing, while the fourth side is open. Determine the maximum area if there is 648 cm of railing.
5. The area of a rectangular box is $722500 \mathrm{~mm}^{2}$. Determine the dimensions that minimize the perimeter.

$$
\begin{aligned}
& x^{2}=722500 \quad \therefore \text { The dimensions ore } 850 \times 850 \\
& x=850
\end{aligned}
$$

