\qquad

RADICALS

A. SIMPLIFYING (Reducing) RADICALS

To simplify means to find another expression with the same value. It does not mean to find a decimal approximation.

METHOD 1: LARGEST PERFECT SQUARE	METHOD 2: PRIME FACTORS
1. Find the largest perfect square which will divide evenly into the number under your radical sign. Dividend Divisor $48 \mid 16$ the largest perfect square that divides evenly into 48 is 16	1. Factor out the number into its prime factors.
2. Write the number appearing under your radical as the product (multiplication) of the perfect square and your answer from dividing. $\sqrt{48}=\sqrt{16 x 3}$	2. Write all the prime factors under your radical $\sqrt{48}=\sqrt{2 \times 2 \times 2 \times 2 \times 3}$
3. Give each number in the product its own radical sign. $\sqrt{48}=\sqrt{16} x \sqrt{3}$	3. Give each twin numbers and single numbers in the product their own radical signs $\sqrt{48}=\sqrt{2 \times 2} \times \sqrt{2 \times 2} \times \sqrt{3}$
4. Reduce the "perfect" radical which you have now created. $\sqrt{48}=\sqrt{16 x 3}=\sqrt{16} x \sqrt{3}=4 \sqrt{3}$	4. Reduce the "perfect" radical which you have now created $\sqrt{48}=2 \times 2 \sqrt{3}$
5. You now have your answer. $\sqrt{48}=4 \sqrt{3}$	5. You now have your answer $\sqrt{48}=4 \sqrt{3}$

i) Simplify the following "entire" radicals.
a) $\sqrt{40}=\sqrt{4 \times 10}=\sqrt{4} \times \sqrt{10}$
b) $\sqrt{72}=\sqrt{36 \times 2}=\sqrt{36} \times \sqrt{2}=6 \sqrt{2}$ $=2 \sqrt{5}$
c) $\sqrt{\mathbf{1 8 0}}=\sqrt{2 \times 2 \times 3 \times 3 \times 5}=\sqrt{2 \times 2} \times \sqrt{3 \times 3} \times \sqrt{5}$ d) $\sqrt{288}=\sqrt{144 \times 2}=\sqrt{144} \times \sqrt{2}=12 \sqrt{2}$

$$
=2 \times 3 \times \sqrt{5}=6 \sqrt{5}
$$

ii) Express each of the following as "entire" radicals.
a) $7 \sqrt{5}=\sqrt{49} \times \sqrt{5}=\sqrt{49 \times 5}=\sqrt{245}$
b) $-3 \sqrt{3}=(-1)(3) \sqrt{3}=-\sqrt{9} \times \sqrt{3}=-\sqrt{27}$

B. MULTIPLYING/ DIVIDING RADICALS

When multiplying radicals, you must multiply the numbers OUTSIDE (O) the radicals AND then multiply the numbers INSIDE (I) the radicals.

$$
O_{1} \sqrt{I_{1}} \times O_{2} \sqrt{I_{2}}=O_{1} O_{2} \sqrt{I_{1} I_{2}} \text { such as } 2 \sqrt{3} \times 4 \sqrt{5}=2 \times 4 \sqrt{3 \times 5}=8 \sqrt{15}
$$

When dividing radicals, you must divide the numbers OUTSIDE (O) the radicals AND then divide the numbers INSIDE (I) the radicals.

$$
\frac{o_{1 \sqrt{I_{1}}}^{O_{2} \sqrt{I_{2}}}}{}=\frac{o_{1}}{o_{2}} \sqrt{\frac{I_{1}}{I_{2}}} \text { such as } \frac{4 \sqrt{15}}{2 \sqrt{3}}=\frac{4}{2} \cdot \sqrt{\frac{15}{3}}=2 \sqrt{5}
$$

Rationalizing The Denominator

If a radical appears in the denominator of a fraction, it will need to be "removed" if you are trying to simplify the expression. To "remove" a radical from the denominator, multiply the top and bottom of the fraction by that same radical to create a rational number (a perfect square radical) in the denominator. This process is called rationalizing the denominator.

Simplify $\frac{2}{\sqrt{3}}$
Answer $\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{\sqrt{9}}=\frac{2 \sqrt{3}}{3}$
\qquad

Multiply or divide, then simplify the following radicals
a) $2 \sqrt{18} \times 3 \sqrt{8}$

$$
\begin{aligned}
& =2 \sqrt{9 \times 2} \times 3 \sqrt{4 \times 2} \\
& =6 \sqrt{2}+6 \sqrt{2} \\
& =36 \sqrt{2 \times 2}=72
\end{aligned}
$$

d) $\frac{-12 \sqrt{24}}{3 \sqrt{2}}$

$$
\begin{aligned}
& =\frac{-12}{3} \sqrt{\frac{24}{2}} \\
& =-4 \sqrt{12} \\
& =-4 \sqrt{4 \times 3} \\
& =-8 \sqrt{3}
\end{aligned}
$$

b) $5 \sqrt{3} \times 7 \sqrt{2}$

$$
=5 \times 7 \sqrt{3 \times 2}
$$

$$
=35 \sqrt{6}
$$

e) $\frac{15}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$
$=\frac{15 \sqrt{5}}{5}$

$$
=3 \sqrt{5}
$$

D. ADDING RADICALS

When adding or subtracting radicals, you must use the same concept as that of adding or subtracting "like" variables. In other words, the radicals must be the same before you add (or subtract) them.

Like Radicals
example $3 \sqrt{6}$ and $2 \sqrt{6}$
non-example $3 \sqrt{6}$ and $2 \sqrt{5}$

Exp: Add $3 \sqrt{6}+2 \sqrt{6}$	Since the radicals are the same, simply add the numbers in front of the radicals (do NOT add the numbers under the radicals). Answer: $5 \sqrt{6}$
Ex2: Add $3 \sqrt{6}+2 \sqrt{5}$	Since the radicals are not the same, and both are in their simplest form, there is no way to combine these values. The answer is the same as the problem. Answer: $3 \sqrt{6}+2 \sqrt{5}$

Add the following radicals
a) $5 \sqrt{3}+2 \sqrt{75}$

$$
\begin{aligned}
& =5 \sqrt{3}+2 \sqrt{25 \times 3} \\
& =5 \sqrt{3}+2 \sqrt{25} \sqrt{3} \\
& =5 \sqrt{3}+10 \sqrt{3} \\
& =15 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } 5 \sqrt{8}-3 \sqrt{18}+\sqrt{3} \\
= & 5 \sqrt{4 \times 2}-3 \sqrt{9 \times 2}+\sqrt{3} \\
= & 5 \sqrt{4} \sqrt{2}-3 \sqrt{9} \sqrt{2}+\sqrt{3} \\
= & 10 \sqrt{2}-9 \sqrt{2}+\sqrt{3} \\
= & \sqrt{2}+\sqrt{3}
\end{aligned}
$$

\qquad

MULTIPLYING BINOMIALS

1. Simplify. Express your answer as a radical in simplest form.
a) $\sqrt{24} \times \sqrt{18}$
b) $\sqrt{7} \times \sqrt{8}$
c) $\sqrt{11} \times \sqrt{14}$
d) $\sqrt{8} \times(-\sqrt{18})$

$$
\begin{array}{l|l}
=\sqrt{6 \times 4} \times \sqrt{9 \times 2} & =\sqrt{7} \times \sqrt{4 \times 2} \\
=2 \sqrt{6} \times 3 \sqrt{2} & =\sqrt{7} \times 2 \sqrt{2} \\
=6 \sqrt{12}=6 \sqrt{4 \times 3} & =2 \sqrt{14} \\
=12 \sqrt{3} &
\end{array}
$$

$$
\sqrt{145}
$$

$$
=\sqrt{4 \times 2} \times(-\sqrt{9 \times 2}
$$

$$
\begin{aligned}
& =2 \sqrt{2}(-3 \sqrt{2}) \\
& =-6(2)=-12
\end{aligned}
$$

e) $\sqrt{20} \times \sqrt{18}$
f) $-\sqrt{32} \times \sqrt{72}$
g) $\sqrt{20} \times \sqrt{32} \times \sqrt{18}$
h) $\sqrt{24} \times \sqrt{54} \times \sqrt{18}$

$$
\begin{array}{ll}
=\sqrt{4 \times 5} \times \sqrt{9 \times 2} & =-\sqrt{16 \times 2} \times \sqrt{36 \times 2}=\sqrt{4 \times 5} \times \sqrt{16 \times 2} \times \sqrt{2} \\
=2 \sqrt{5} \times 3 \sqrt{2} & =-4 \sqrt{2} \times 6 \sqrt{2} \\
=6 \sqrt{10} & =2 \sqrt{5} \times 4 \sqrt{2} \times 3 \sqrt{2} \\
=-24 \sqrt{2 \times 2} & =24 \times 2 \sqrt{5} \\
& =-48
\end{array}
$$

2. Simplify. Express your answer as a radical in simplest form.
a) $(3-\sqrt{2})(3+\sqrt{2})$
b) $(-7+\sqrt{7})(-7-\sqrt{7})$
c) $(\sqrt{11}-x)(\sqrt{11}+x)$
d) $(\sqrt{5}-3)(3+\sqrt{5})$

$$
\begin{aligned}
& =9+3 \sqrt{2}-3 \sqrt{2}-\sqrt{2 \times 2} \\
& =9-2 \\
& =7
\end{aligned}
$$

DOS $=(\sqrt{11})^{2}-(x)^{2}$
$=(\sqrt{5})^{2}-(3)^{2}$
$=5-9$

$$
=-4
$$

e)

f)

g) $(x+1+\sqrt{2})(x+1-\sqrt{2})$
h) $(y-\sqrt{55})(y+\sqrt{22})$

$$
\begin{aligned}
& =6-2 \sqrt{10}+3 \sqrt{6}-\sqrt{6 \times 10} \\
& =6-2 \sqrt{10}+3 \sqrt{6}-\sqrt{2 \times 3 \times 2 \times 5} \\
& =6+3 \sqrt{6}-2 \sqrt{10}-2 \sqrt{5}
\end{aligned}|=-8-\sqrt{15}-8 \sqrt{15}-15|=(x+1)^{2}-(\sqrt{2})^{2}
$$

1a) $12 \sqrt{3}$	b) $2 \sqrt{14}$	c) $\sqrt{154}$	d) -12
e) $6 \sqrt{10}$	f) -48	g) $48 \sqrt{5}$	h) $108 \sqrt{2}$
aa) 7	b) 42	c) $11-x^{2}$	d) -4
e) $6+3 \sqrt{6}-2 \sqrt{10}-2 \sqrt{15}$ f) $-23-9 \sqrt{15}$	g) $x^{2}+2 x-1$	h) $y^{2}+(\sqrt{22}-\sqrt{55}) y-11 \sqrt{10}$	

SIMPLIFYING RADICALS

1. Simplify:
a) $\sqrt{12}=\sqrt{4 \times 3}=2 \sqrt{3}$
b) $\sqrt{20}=\sqrt{4 \mathrm{KJ}}=2 \sqrt{5}$
c) $\sqrt{45}=\sqrt{9 \times 5}=3 \sqrt{5}$
d) $\sqrt{450}=\sqrt{9 \times 25 \times 2}=15 \sqrt{2}$
e) $\sqrt{72}=\sqrt{36 \times 2}=6 \sqrt{2}$ f) $\sqrt{200}=\sqrt{100 \times 2}=10 \sqrt{2}$

450	9
50	21

2. Simplify:
a) $\frac{42 \sqrt{2}}{3}=4 \sqrt{2}$
b) $\frac{8 \sqrt{6}}{b}=\sqrt{6}$
c) $\frac{5 \times \sqrt{11}}{6 \times 2}=\frac{5 \sqrt{11}}{6}$
d) $\sqrt{\frac{100}{144}}=\sqrt{\frac{25}{36}}=\frac{5}{6}$
3. Solve for x.
a) $\sqrt{x^{2}}=\sqrt{169}$
b) $\begin{aligned} 2 \sqrt{x^{2}} & =\sqrt{48} \\ x & =144\end{aligned}$

4. Express both roots in decimal form, rounded to 3 decimal places. $\quad x=-5$
a) $x=2 \pm 2 \sqrt{2}$
b) $x=-2 \pm \frac{\sqrt{5}}{3}$
c) $x=-\frac{7}{5} \pm \frac{2 \sqrt{10}}{5}$
$3 \sqrt{8}+\sqrt{12}$
2 $\quad \begin{aligned} x & =-4 \\ x & =2\end{aligned}$
5. Simplify:
a) $2 \sqrt{2}+\sqrt{27}+2 \sqrt{12}+\sqrt{8}$
b) $\frac{\sqrt{24} \sqrt{8}}{\sqrt{3}}$
c) $\frac{\sqrt{6} \sqrt{10}}{\sqrt{12}}$
d) $\frac{6+\sqrt{12}}{2}$
e) $(\sqrt{2}+3)(\sqrt{2}-3)$
f) $(3 \sqrt{2}+4 \sqrt{3})(3 \sqrt{2}-4 \sqrt{3})$
g) $2 \sqrt{24}(-3 \sqrt{3})$
h) $\frac{15 \sqrt{6}}{5 \sqrt{12}}$
i) $2 \sqrt{6}(3 \sqrt{2}-\sqrt{3})$
j) $(6+4 \sqrt{3})(6-4 \sqrt{3})$

Answers

1.
2. a) $2 \sqrt{3}$
b) $2 \sqrt{5}$
c) $3 \sqrt{5}$
d)
$15 \sqrt{2}$
e) $6 \sqrt{2}$
f) $10 \sqrt{2}$
3. a) $4 \sqrt{2}$
b) $\sqrt{6}$
c) $\frac{5 \sqrt{11}}{6}$
d) $\frac{5}{6}$
4. a) ± 13
b) $\pm 4 \sqrt{3}$
c) $-5,13$
d) $-4,2$
5. a) $-0.828,4.828$
b) $-2.745,-1.255$
c) $-2.665,-0.135$
6. a) $4 \sqrt{2}+7 \sqrt{3}$
b) 8
c) $\sqrt{5}$
d) $3+\sqrt{3}$
e) -7
f) -30
g) $-36 \sqrt{2}$
h) $\frac{3}{\sqrt{2}}$
i) $12 \sqrt{3}-6 \sqrt{2}$
j) -12
7. Simplify:

a) $2 \sqrt{2}+\sqrt{27}+2 \sqrt{12}+\sqrt{8}$	b) $\frac{\sqrt{24} \sqrt{8}}{\sqrt{3}}$
c) $\frac{\sqrt{6} \sqrt{10}}{\sqrt{12}}$	d) $\frac{6+\sqrt{12}}{2}$
e) $(\sqrt{2}+3)(\sqrt{2}-3)$	f) $(3 \sqrt{2}+4 \sqrt{3})(3 \sqrt{2}-4 \sqrt{3})$
g) $2 \sqrt{24}(-3 \sqrt{3})$	h) $\frac{15 \sqrt{6}}{5 \sqrt{12}}$
i) $2 \sqrt{6}(3 \sqrt{2}-\sqrt{3})$	j) $(6+4 \sqrt{3})(6-4 \sqrt{3})$

Simplify:
$2 \sqrt{2}+\sqrt{27}+2 \sqrt{12}+\sqrt{8}$
c) $\frac{\sqrt{6} \sqrt{10}}{\sqrt{12}}$

$$
\text { Sa) } \begin{aligned}
& 2 \sqrt{2}+\sqrt{9 \times 3}+2 \sqrt{4 \times 3}+\sqrt{4 \times 2} \\
= & 2 \sqrt{2}+\sqrt{9} \sqrt{3}+2 \sqrt{4} \sqrt{3}+\sqrt{4} \sqrt{2} \\
= & 2 \sqrt{2}+3 \sqrt{3}+(2)(2) \sqrt{3}+2 \sqrt{2} \\
= & 2 \sqrt{2}+3 \sqrt{3}+4 \sqrt{3}+2 \sqrt{2} \\
= & 4 \sqrt{2}+7 \sqrt{3}
\end{aligned}
$$

$\left\{\right.$ b) $\frac{\sqrt{4 \times 6} \sqrt{4 \times 2}}{\sqrt{3}}=\frac{\sqrt{4} \sqrt{6} \sqrt{4} \sqrt{2}}{\sqrt{3}}=\frac{4 \sqrt{12}}{\sqrt{3}}$
e) $(\sqrt{2}+3)(\sqrt{2}-3)$
$=(\sqrt{2})(\sqrt{2})-3 \sqrt{2}+3 \sqrt{2}-9$
$=2-9=-7$
\qquad

