Graphing Using Vertex Form

Quadratic Transformations Review				
+a the parabola is <u>upright</u>	and vertically _	stretched		
- $\frac{1}{2}a$ the parabola is down word	and vertically	Compressed		
- h the parabola horizontally	shifts to the <u>right</u>	(wacky bracky)		
+ h the parabola <u>horizon tally</u>	shifts to the <u>left</u>	(wacky bracky)		
+ k the parabola shifts <u>$\mu \rho$</u>	the <u> </u> - axis			
- k the parabola shifts down	the 🏒 - axis			
NOTE the vertex of a parabola is (h, k)				

Parabola 1	Parabola 2		
Draw the graph of: $2(x+1)^2 - 8$	Draw the graph of: $-(x-3)^2 + 4$		
From the equation it can be seen	From the equation it can be seen		
The vertex is	The vertex is <u>(3,4)</u>		
The parabola opens UP	The parabola opens		
The step pattern is <u>2</u> , <u>6</u> , <u>10</u>	The step pattern is <u>-1</u> , <u>-3</u> , <u>-5</u>		
Graph the parabola	Graph the parabola		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
From the graph it can be seen	From the graph it can be seen		
The zeros are (-3,0) and (1,0)	The zeros are $(1,0)$ and $(5,0)$		
The y – intercept is $(0, -6)$	The y – intercept is $(0, -5)$		
The optimal value is <u>~8</u>	The optimal value is <u>4</u>		
The axis of symmetry is <u>X= '</u>	The axis of symmetry is $\chi = 3$		

Graphing Using Vertex Form Practice

1. For the following quadratic relations, fill in the table. Use a Graphing calculator to check your answers.

Equation	$y = 3(x - 4)^2 - 10$	$y = -2(x + 1)^2$	$y = -(x + 2)^2 + 8$
Vertex			
Direction of Opening			
Step Pattern			
Max or Min?			
Optimal Value			
Axis of Symmetry			
y-intercept			

2. Explain, in complete sentences, the steps you would take to draw the parabola $y = (x - 5)^2 + 1$

Finding Equations of Quadratic Relations

To find the **<u>EQUATION</u>** of a quadratic relation:

- 1. use the <u>Vertex</u> (h, k) and <u>One</u> other point to find 'a', the vertical <u>stretch</u> or <u>Compression</u>
- 2. write the relation in vertex form $y = a(x-h)^2 + k$ using the vertex and the value of 'a'

EXAMPLES

2+

q = 0.25

Write an equation for each of the relations in vertex form

c) Vertex (4, -2) passing through y-intercept (0, 2) h=4 k=-2 y=2

$$y = a(x-h)^{2} + k$$

 $2 = a(0-4)^{2} - 2$
 $+2 = 16q$
 $y = 0.25(x-4)^{2} - 2$
 $+2 = 16q$

Finding Equations of Quadratic Relations Practice

- 4. Write the equation for each parabola:
 - a) Vertex (-1, 4), opens down, congruent to (same shape) $y = \frac{1}{4} x^2$ $y = \frac{1}{4} \left(x + 1 \right)^2 + 4$

