## Graphing Using Vertex Form

## Quadratic Transformations Review

$+a$ the parabola is upright and vertically stretched
$-1 / 2 a$ the parabola is down word and vertically compressed

- $h \quad$ the parabola $\qquad$ shifts to the $\qquad$ (wacky bracky)
$+h$ the parabola horizontally_ shifts to the $\qquad$ (wacky bracky)
$+k$ the parabola shifts $\qquad$
$\qquad$ the $y$-axis
- $k$ the parabola shifts down the $y$ - axis
**NOTE** the vertex of a parabola is $\qquad$ $(h, k)$ _



## Graphing Using Vertex Form Practice

1. For the following quadratic relations, fill in the table.

Use a Graphing calculator to check your answers.

| Equation | $y=3(x-4)^{2}-10$ | $y=-2(x+1)^{2}$ | $y=-(x+2)^{2}+8$ |
| :---: | :--- | :--- | :--- |
| Vertex |  |  |  |
| Direction of Opening |  |  |  |
| Step Pattern |  |  |  |
| Max or Min? |  |  |  |
| Optimal Value |  |  |  |
| Axis of Symmetry |  |  |  |
| y-intercept |  |  |  |

2. Explain, in complete sentences, the steps you would take to draw the parabola $y=(x-5)^{2}+1$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
3. Graph each of the following quadratic relations.
a) $y=(x-4)^{2}-3$

b) $y=-2(x+5)^{2}+9$


Finding Equations of Quadratic Relations
To find the EQUATION of a quadratic relation:

1. use the vertex
( $h, k$ ) and $\qquad$ one other point to find ' $a$ ', the vertical
$\qquad$ stretch or $\qquad$ compression $\qquad$ $y=a(x-h)^{2}+k$ using the vertex and
2. write the relation in vertex form the value of ' $a$ '

EXAMPLES
Write an equation for each of the relations in vertex form
a)


$$
\begin{aligned}
& V(-1,2) \quad P(0,3) \\
& h=1, l_{k=2} \quad \text { sub cosh know } \\
& y=a(x-h)^{2}+k \quad \therefore y=(x+1)^{2}+2 \\
& 3=a(0+1)^{2}+2 \\
& 3=a+2 \\
& a=1
\end{aligned}
$$

b)


$$
\begin{aligned}
& V(1,-4) \quad P(0,-6) \\
& h=1 \quad \underset{k}{\alpha} \quad \underset{x}{ } \quad \underset{x}{2} \quad y=-6 \\
& y=a(x-h)^{2}+k \\
& -6=a(0-1)^{2}-4 \\
& -6+4=9 \\
& a=-2
\end{aligned}
$$

c) Vertex $(4,-2)$ passing through $y$-intercept $(0,2)$

$$
h=4 \quad \begin{aligned}
& k=-2
\end{aligned}
$$

$$
\underset{x=0}{x} \quad \underset{y}{x}=2
$$

$$
y=a(x-h)^{2}+k
$$

$$
2=a(0-4)^{2}-2
$$

$$
\therefore y=0.25(x-4)^{2}-2
$$

$$
\begin{aligned}
& 2+2=16 a \\
& \frac{4}{1 b}=\frac{16 a}{16} \\
& a=0.25
\end{aligned}
$$

Finding Equations of Quadratic Relations Practice
4. Write the equation for each parabola:
a) Vertex $(-1,4)$, opens down, congruent to (same shape) $y=\frac{1}{4} x^{2}$

$$
y=\frac{1}{4}(x+1)^{2}+4
$$

b)

$$
\begin{aligned}
& \text { Vertex }(5,-2), y \text {-intercept } \\
& y=a(x-h)^{2}+k \\
& 8=9(0-5)^{2}-2 \\
& \frac{10}{25}=\frac{25 a}{25} \quad Q=0.4
\end{aligned}
$$

c)


$$
\begin{aligned}
& h \\
& V(-5,2) \quad D(-3,4) \\
& y=a(x-h)^{2}+k \\
& 4=a(-3+5)^{2}+2 \quad \therefore y=0.5(x+5)^{2}+2 \\
& 4-2=49 \\
& \frac{2}{4}=\frac{49}{4} \\
& a=0.5
\end{aligned}
$$

d)


$$
\begin{aligned}
& V(2,2) \quad P(1,-1) \\
& r \quad x^{\prime} \quad \frac{1}{y} \\
& y=a(x-h)^{2}+k \\
& -1=a(1-2)^{2}+2 \\
& -1-2=9 \\
& a=-3
\end{aligned}
$$

e)

$\qquad$
Day 6: Graphing - Vertex Form
your equation will change based on where you put the "axis"
5. Draw a Cartesian plane on the following pictures and determine the quadratic equation for each. (You may have to estimate some of the numbers.)


