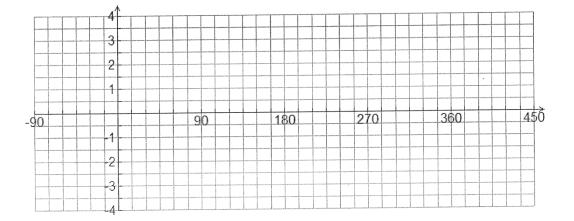
Translations of Sinusoidal Functions

f(x) = asin[k(x-d)] + c and f(x) = acos[k(x-d)] + c


Part A: Horizontal Translations/ Shifts

Recall: x says something yet does the exact opposite.

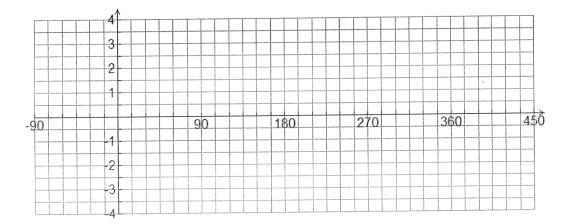
The graph of y = f(x + d) is obtained from the graph of y = f(x) translated ______. The graph of y = f(x - d) is obtained from the graph of y = f(x) translated ______.

Example: Refer to $y = \sin(\theta + 30^\circ)$ for the questions that follow.

1. Use mapping notation to graph the function below.

2. State its period and amplitude.

3. State the domain and range of the transformed function.

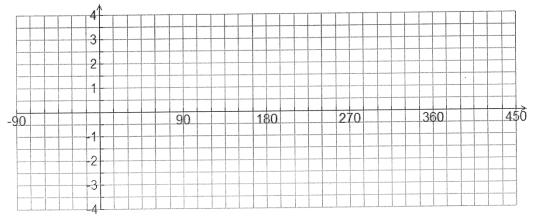

MCR3U1 Day 6: Transformations of Sinusoidal Functions II

Part B: Vertical Translations/ Shifts

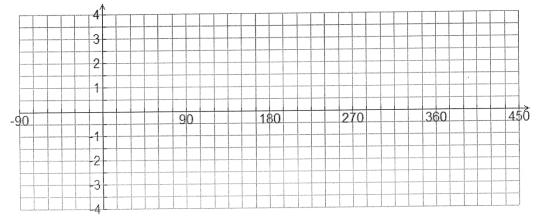
The graph of y = f(x) + c is obtained from the graph of y = f(x) translated ______. The graph of y = f(x) - c is obtained from the graph of y = f(x) translated ______.

Example: Refer to $y = \cos \theta + 3$ for the equations that follow.

1. Use mapping notation to graph the function below.



2. State its period and amplitude.


3. State the domain and range of the transformed function.

Let's Put it All Together!

Ex1: Graph $y = 2\sin(\theta + 45^\circ) - 1$ using mapping notation. Then, state its amplitude, period and equation of the axis of the curve.

Ex2: Graph $y = 3\cos(2\theta - 120^\circ) + 1$ using mapping notation. Then, state its amplitude, period and equation of the axis of the curve.

