Translations of Sinusoidal Functions

$$
f(x)=\boldsymbol{a s i n}[k(x-d)]+c \text { and } f(x)=\boldsymbol{a c o s}[k(x-\boldsymbol{d})]+c
$$

Part A: Horizontal Translations/ Shifts

Recall: x says something yet does the exact opposite.
The graph of $y=f(x+d)$ is obtained from the graph of $y=f(x)$ translated d units $\angle E F T$.
The graph of $y=f(x-d)$ is obtained from the graph of $y=f(\mathrm{x})$ translated of units R16HTT
Example: Refer to $y=\sin \left(\theta+30^{\circ}\right)$ for the questions that follow.

1. Use mapping notation to graph the function below.

180°

$0^{\circ}, 360^{\circ}$

Per
2. State its period and amplitude.

$$
\begin{array}{ll}
P=360 & y=\sin ^{k}(\theta-30) \\
a=1
\end{array}
$$

3. State the domain and range of the transformed function.

$$
\begin{aligned}
& D=\{\theta \in \mathbb{R}\} \quad R:\{y \in \mathbb{R} \mid-1 \leqslant y \leqslant 1\} \\
& D=\{\theta \in \mathbb{R}\{30 \leqslant \theta \leqslant 330\}
\end{aligned}
$$

Part B: Vertical Translations/ Shifts
The graph of $y=f(x)+c$ is obtained from the graph of $y=f(x)$ translated C units UP
The graph of $y=f(x)-c$ is obtained from the graph of $y=f(x)$ translated units DOWN
Example: Refer to $y=\cos \theta+3$ for the equations that follow.

1. Use mapping notation to graph the function below.

$$
\begin{aligned}
& \cos \theta \\
& (0,1) \\
& (90,0) \\
& (180,-1) \rightarrow(0,1+3)=(0,4) \\
& (270,0) \rightarrow(90,0+3)=(90,3) \\
& (360,1) \rightarrow(180,-1+3)=(180,2) \\
& (270,0+3)=(180,3) \\
& (360,1+3)=(360,4)
\end{aligned}
$$

2. State its period and amplitude.

$$
\begin{aligned}
& P=360 \\
& a=1
\end{aligned}
$$

3. State the domain and range of the transformed function.

$$
\begin{aligned}
& D=\{\theta \in R\} \quad R=\{y \in R \mid 2 \leqslant y \leqslant 4\} \\
& D=\{\theta \in R \mid 0 \leqslant(\theta \leqslant 360\}
\end{aligned}
$$

Let's Put it All Together! ।
Ex1: Graph $y=2 \sin \left(\theta+45^{\circ}\right)-X$ using mapping notation. Then, state its amplitude, period and equation of the axis of the curve.

$$
\begin{aligned}
& \sin \theta \\
& 2 \sin (\theta+45)-1 \\
& (x, y) \\
& (0,0) \longrightarrow(0-45,2(0)-1)=(-45,-1) \\
& (90,1) \longrightarrow(00-45,2(1)-1)=(45,1) \\
& (180,0) \longrightarrow(180-45,2(0)-1)=(135,-1) \\
& (270,-1 \longrightarrow \quad(270-45,2(-1)-1)=(225,-3) \\
& (360,0) \longrightarrow(360-45,2(0)-1)=(315,-1)
\end{aligned}
$$

Ex2: Graph $\left.y=3 \cos ^{2} \theta-\stackrel{120}{00} 0^{\circ}\right)+1$ using mapping notation. Then, state its amplitude, period and equation of the axis
of the curve.

$$
y=3 \cos [2(\theta-60)]+1
$$

$$
\begin{aligned}
& \cos \theta(x, y) \quad 3 \cos [2(\theta-60)]+1 \quad\left(\frac{\theta}{2}+60,3 y+1\right) \\
& (0,1) \longrightarrow\left(\frac{0}{2}+60,3(1)+1\right)=(60,4) \\
& (0,0,0) \longrightarrow\left(\frac{90}{2}+60,3(0)+1\right)=(105,1) \\
& (180,-1) \longrightarrow\left(\frac{140}{2}+60,3(-1)+1\right)=(150,-2) \\
& (270,0) \longrightarrow\left(\frac{270}{2}+60,3(0)+1\right)=(195,1) \\
& (360,1) \longrightarrow\left(\frac{360}{2}+60,3(1)+1\right)=(240,4)
\end{aligned}
$$

