DECOMPOSITION METHOD
Factor $2 x^{2}+x-6$
The two numbers that add to +1 and multiply to -12 are ...

$$
\begin{aligned}
& =2 x^{2}+3 x-4 x-6 \\
& =x(2 x+3)-2(2 x+3) \\
& =(2 x+3)(x-2)
\end{aligned}
$$

Split the middle term using the two numbers you found, $m \times$ and $n x$.
Factor these 4 terms by grouping. (i.e. common factor the first two terms, common factor the last two terms - Remember: the two binomials in the brackets should always be the same).

Common factor the binomials in the brackets.

AUSTRALIAN METHOD
Example 1: Factor $2 x^{2}+x-6$
The two numbers that add to +1 and multiply to - 12 are ...

$$
\begin{aligned}
& =\frac{(2 x+3)(2 x-4)}{2} \\
& =\frac{(2 x+3)(2)(x-2)}{2}
\end{aligned} \int(2 x+3)(x-2)
$$

Write the following terms in this form: $\frac{(a x+m)(a x+n)}{a}$.
Common factor the two sets of brackets.
Reduce the fraction.

Page $\mathbf{1}$ of $\mathbf{3}$

$$
\begin{align*}
& \begin{array}{l}
\text { Answers } 2 n^{2}+3 n-9 \\
1=2 n^{2}-3 n+6 n-9 \quad \text { (not in order): }
\end{array} \\
& (7 a+4)(a+7) \\
& -(2 a+5)(3 a+5) \\
& 4(b+5)(4 b-5) \\
& 3(3 k+1)(k+7) \\
& (n-4)(4 n-1) \\
& (n-5)(4 n+5) \\
& (2 n+1)(n+2) \\
& (2 n+3)(3 n-2) \\
& (2 n-3)(n+3) \\
& (3 n-2)(n-2) \\
& (5 n+4)(n+3) \\
& 3(5 n+1)(n-2) \\
& (3 p-5)(p+1) \\
& (2 v+1)(v+5) \\
& (x-7)(4 x-7) \\
& (x+6)(6 x+1) \\
& (3 x-7)(2 x+7) \tag{5x-3}
\end{align*}
$$

