\qquad
Day 6: Word Problems

APPLICATIONS OF TRIGONOMETRY

- When can we use Sine Law?
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

The Sine Law can be used when we have a side length opposite a known angle and another side length or angle

- When can we use Cosine Law?

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

 $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \quad$ The Cosine Law can be used when we have a contained angle or all three-side lengths
Keys to solving word problems

1) Read the problem carefully
2) Sketch a diagram and record your known measurements in the appropriate places.
3) Identify unknown.
4) Use triangle relationships to determine the unknown measures.

Example 1: Lynn and Fred, standing 2000 metres apart, spotted a hot air balloon at angles of elevation of 50° and 70° respectively. The hot air balloon is located between them. What is the distance from Fred directly to the hot air balloon? Show your work.
$Q=180-50-70$

$$
\frac{x}{\sin 50}=\frac{2000}{\sin 60} \quad \begin{aligned}
& \text { multiply both sides by } \sin 50 \\
& \text { to cancel } \sin 50 \text { on heft Side }
\end{aligned}
$$

$$
x=\frac{2000}{\sin 60} \cdot \sin 50
$$

$$
x=1769
$$

\therefore Fred is 1769 m a, way from the balloon.
\qquad
Day 6: Word Problems
Example 2: A triathlon is an event that has competitors swim, run, and bicycle over a set course. The organizers of a triathlon wish to know the total length of the course and took the measurements shown.
Determine the total length of the course, represented in the diagram by the arrows.

Stopl: side a

$$
\begin{array}{rlrl}
\angle A & =180-72.4-94 & \frac{a}{\sin 13.6} & =\frac{40.5}{\sin 94} \\
\angle A & =13.6 & a & =\frac{40.5}{\sin 94} \cdot \sin 13.6 \\
a & =9.5 \mathrm{~km}
\end{array}
$$ \therefore The length of the course is $1.5+40.5+9.5=51.51 \mathrm{~cm}$

Example 3: Determine lengths a and b

Step 2 : side b using the cosine low

$$
\begin{aligned}
b^{2} & =5^{2}+8^{2}-2 \cdot 5 \cdot 8 \cdot \cos 48 \\
b^{2} & =35.4696 \\
\sqrt{b^{2}} & =\sqrt{35.4696} \\
b & \doteq 5.95 \mathrm{~cm}
\end{aligned}
$$

