ELIMINATION

To solve a linear system by elimination:

If the two equations have the same x OR y coefficient, they can be solved by a process called 'Elimination'. We can do this by either **adding or subtracting the two equations!**

Step 1: Eliminate by <u>adding</u> <u>or subtracting</u> the two equations. *Add if the signs are opposite, subtract if the signs are the same. Step 2: Solve for the first variable by solving the equation	Example 1 2x + 5y = 30 4x - 5y = 0 $2x + 4x + 5y + (-5y) = 3^{\circ} + 0$ 6x + 0 = 30 $\frac{6x}{6} = \frac{30}{6}$ x = 5	Example 2 0 3x + 4y = 22 $-0 3x - y = 17$ $3x - (5x) + 4y - (-y) = 22 - (17)$ $0 + 4y + y = 22 - 17$ $5y = 5$ $5y = 5$ $7y = 1$
Step3: Substitute your solution from step 2 into one of the original equations (you may choose either one to use).Step 4: Solve for the second variable by solving the equation	() $2x + 5y = 30$ 2(5) + 5y = 30 10 + 5y = 30 5y = 20 5y = 4	3x - y = 17 $3x - 1^{+1} = 17^{+1}$ $\frac{3x}{3} = \frac{18}{3}$ x = 6
State the final answer as a coordinate (x, y)	$(\underline{x}, \underline{y})$ $(\underline{5}, \underline{4})$	(\mathbf{x}, \mathbf{y}) $(6, 1)$
You can check your work by completing a LS/RS check. Substitute your (x,y) solution into the original equation that you DID NOT use in step 3 above.	$\begin{array}{c} CHECK\\ \hline & \\ \hline \\ \hline$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$
t. The	solution is $(5,4)$	\therefore The solution is (6,1)

10 Academic Day 7: Solving Linear Systems by ELIMINATION I het's pick "y" Example 3 6x + 5y = 3 $c r 5, 15x (x + y = 14)$ is 5 Step 1: Eliminate by <u>adding</u> <u>or subtracting</u> the two equations. *Add if the signs are opposite, subtract if the signs are the same. Step 2: Solve for the first variable by solving the equation Step 3: Substitute your solution from step 2 into one of the original equations (you may choose either one to use). Step 4: Solve for the second variable by solving the equation	Date: <u>Unit 1: Linear Systems</u> Fight the Variable with 2(4x+3y=3) the opposite sign. 3(3x-2y=-19) 8x+6y=6 $(\pm) 9x-6y=-57$ 8x+(9x)+6y+(-6y)=6+(-57) 17x=-51
State the final answer as a coordinate (x, y) You can check your work by completing a LS/RS check. Substitute your (x,y) solution into the original equation that you DID NOT use in step 3 above. (x, y) (CHECK) $(5x + 5y = -3)$ $(5x + 5y = -3$	(x, y) $(3, 5)$ $(CHE(L))$ $3x - 2y - 19$ $3(-3) - 2(5) - 19$ $-9 - 10$ -19 $L5 = PS$ $The solution is (-3,5)$

Practice: Solve by Elimination.

1. $4x + 2y = 3$ 3x + 2y = 5	2. $3x - 5y = 8$ 10x + 5y = 44	
4x - (3x) + 2y - (2y) = 3 - (5)	$3 \times + (10 \times) - 5 \times + (5 \times) = 8 + (44)$	
1) <u>sub</u> (x = =)	$\frac{13x}{13} = \frac{52}{13}$	
3x + 2y = 5	x = 4	
2 - 6 + 2y = 5	5 = 8	
$\frac{2y}{2} = 11$	3(4) - 5y = 18	
$\frac{2}{ y = \frac{1}{2}}$	12 - 5y = 18	
	$\frac{-5y}{-5} = \frac{6}{-5}$	
3) · POI (-2, 1/2)	$(y = -6/_{\overline{2}})$	
	3) POT (4, -6/5)	
3. $3(x - 3y = 0)$ Eliminate "x" 1(3x - 2y = -7) LCM = 3	4. $3(3x - 2y = 15)$ 2 (-4x + 3y = -20) Eliminate either """ LCM is "6"	
¥	1) $q_{X} - 6y = 45$	
(1) 3x - 9y = 0 $(2) 3x - 2y = 7$	$\frac{1}{1} - 8 \times + 6 y = -40$	
	4x + (-6x) - 6y + (-6y) = 4y + (-4y)	
-9y+2y=0+7	2) 545	
$-\frac{79}{-7} = \frac{4}{-7}$	3x - 2y = 15	
$\overline{y} = \overline{y}$	3(5) - 2y = 15	
x - 3y = 0	-2y = 2	
x-3(-1) = 0	$-\frac{2}{y}$	
x = -3 . $(-3, -1)$	$\overline{\mathcal{A}}$, $\overline{\mathcal{POT}}$ is (5.9)	
	<i>y</i> (, , , <u>-</u> , , , , ,)	
ANSWERS: 1. (-2, 5.5), 2. (4, 0.8), 3. (-3, -1), 4. (5, 0)		