\qquad
Compound Interest - Unit Review

1. Use the simple interest triangle to write the formula for each of the variables

$$
\langle I| r \left\lvert\, t \quad I=\operatorname{Pr}+\quad P=\frac{I}{r t} \quad r=\frac{I}{P t} \quad t=\frac{I}{\operatorname{Pr}}\right.
$$

2. Write the following interest rates as they would appear in the simple interest formula as r.
a) 9.5%
b) 4.25%
c) 0.75%

$$
=0.095
$$

$$
=0.0425
$$

$$
=9.0075
$$

3. Write the following lengths of time as they would appear in the simple interest formula as t.
a) $\frac{30}{12}$ months
b) $\frac{25}{52}$ weeks
c) $\frac{193}{365}$ days
$=2.5$
$=0.4808$
$=0.5288$
4. How much interest is earned on $\$ 500$ invested for 42 months at 5.5% per year simple interest?

$$
\begin{aligned}
& I=? \\
& P=500 \\
& r=5.5 \%=0.055 \\
& t=42 \mathrm{month} \div 12=3.5
\end{aligned}
$$

$$
\begin{aligned}
I & =\text { Pr } \\
& =500(0.055)(3.5) \\
& =96.25 \quad \therefore \$ 96.25 \text { interest is eqrued. }
\end{aligned}
$$

5. How much money must be invested at 6% per year, simple interest to earn $\$ 500$ in interest in two years?

$$
\begin{aligned}
& I: 500 \\
& P: ? \\
& r=0.06 \\
& t=2 y e a r s
\end{aligned}
$$

$$
P=\frac{I}{r t}=\frac{500}{0.06 \cdot 2}=4166.67
$$

6. What simple interest rate is needed to grow $\$ 150$ to $\$ 200$ in 24 months?

$$
\begin{array}{lr}
I=50 & r=\frac{I}{P t}=\frac{50}{150 \cdot 2}=0.167 \\
P=150 & \therefore 16.7 \% \\
t=? & T^{k} \text { rate is } \\
t=24 \text { months } \div 12=2 \text { years } &
\end{array}
$$

7. Write the following interest rates as they would appear in the compound interest formula as i.
a) 2% bi-weekly
b) 5.5% monthly
c) 12% quarterly
$0.02 \div 26$

$$
0.055 \div 12
$$

$$
0.12 \div 4
$$

8. Write the number of compounding periods as it would appear in the compound interest formula \boldsymbol{n}.
a) Compounded weekly
b) Compounded semi-
c) Compounded semifor 3 years
3×52 monthly for 2 years annually for 20 months

$$
2 \times 24
$$

$$
2 \times \frac{20}{12}
$$

9. Calculate the amount of a $\$ 30000$ investment at 6.75% per year, compounded quarterly for 4 years. How much interest was earned?
T: quarterly
A_{i} ?

$$
\begin{array}{ll}
\text { P: } & 30000 \\
i: & 0.0675 \div 4 \\
n: & 4 \times 4
\end{array}
$$

$$
\begin{aligned}
A & =P(1+i)^{n} \\
& =30000(1+0.0675 \div 4)^{16} \\
& =39210.50
\end{aligned}
$$

$$
\begin{aligned}
I & =A-P \\
& =39210.50-30000 \\
& -9210.50 \\
\therefore & \$ 9210.50 \text { interest carve } 6
\end{aligned}
$$

10. Most department store credit cards charge 24% per year interest compounded monthly on unpaid balances. How much interest would a $\$ 1400$ credit card debt accrue (be charged) if the balance was not paid for 3 months?

T: C.monthls
A: ?
P: 1400
i : $0.24 \div 12$
n : 3 month,

$$
\begin{aligned}
A & =P(1+i)^{n} \\
& =1400(1+0.24 \div 12)^{3} \\
& =1485.69
\end{aligned}
$$

$$
\begin{aligned}
I & =A-P \\
& =1485.69-1400 \\
& =85.69
\end{aligned}
$$

$\therefore \$ 85.69$ chafed
11. How much money would Lily have to invest today to have $\$ 500$ in three years, at 11% per year, compounded monthly?

$$
\begin{array}{ll}
\text { compounded monthly? } & P \\
\text { A: c.monthls } & P(1+i)^{-n} \\
P: ? & \\
P: 0.11 \div 12 &
\end{array}
$$

$$
n: 3 y e a \pm \times 12
$$

