Determining the Equation of a Sinusoidal Function

$$
f(x)=\operatorname{asin}[k(x-d)]+c \text { and } f(x)=\operatorname{acos}[k(x-d)]+c
$$

Case 1: SINE EQUATION
The function can be considered as a sine function. Determine the equation of the function, and then check your answer using desmos. (Note: You need to choose degrees on Desmos. Just click
(1)Determie the ky facture.


- axis of the curve -omplitude -period $=\frac{360}{k}$

$$
\begin{aligned}
& \frac{6+(-6)}{2}=0 \quad c=0 \quad \frac{6-(-6)}{2}=\frac{6}{a=6} \\
& y=a \sin [k(x-d)]+c \\
& y=6 \sin (x-0) \\
& y=6 \sin (x)
\end{aligned}
$$

Case 2: COSINE EQUATION
The function can be considered as a cosine function. Determine the equation of the function and then check your answer using desmos.
 Key features same as above

$$
\begin{aligned}
& c=0 \quad a=6 \quad k=1 \\
& y=6 \cos (x-90)^{0}
\end{aligned}
$$

- axis of the curve

$$
\frac{6+(-2)}{\frac{2}{c=2}}=2
$$

$$
\begin{array}{cc}
- \text { amplitude } & \text {-Period }=\frac{360}{k} \\
\frac{6-(-2)}{2}=4 & 360=\frac{360}{k} \\
0=4 & k=1
\end{array}
$$

Day 7: Determining the Equation
Ex1: Write two equations to represent each function.


Ex2: Write two equations to represent each function.


- shift 45 to right for sin 135 to right for cos
Sine equation $\Rightarrow y=9 \sin [k(x-d)]+c$

$$
y=4 \sin (x-45)+2
$$

$\cos$ equation $\Rightarrow y=a \cos [k(x-d)]+c$

$$
y=4 \cos (x-135)+2
$$

$$
\begin{array}{c|c}
\text {-axis of the } & \text {-amplitude } \\
\text { curve } & \text { Period }=\frac{\overline{360}}{k} \\
\frac{-1+(-6)}{-2}=-3.5 & \frac{-1-(-6)}{2}=2.5 \\
\hline c=-3.5 & a=2.5
\end{array} \begin{gathered}
360=\frac{360}{k} \\
\end{gathered}
$$

(1) $y=a \sin [k(x-d)]+c$
(2) $180^{\circ}$ to $\angle E F T$

$$
y=-2.5 \cdot \sin (x)-3.5
$$

$$
y=2.5 \sin (x+180)-3.5
$$

(3) $180^{\circ}$ to R16HT

Ex3: A nail located on the circumference of a water wheel is moving as the current pushes on the wheel. The height of the nail in terms of time can be modeled by the graph shown. Determine the equation of a sinusoidal function from its graph.


Time (s)

Shift $\Rightarrow d=7.5$

$$
\begin{aligned}
y & =a \sin [k(x-d)]+c & \text { or } \quad y & =a \cos [k(x-d)]+c \\
& =2 \sin [36(x-7.5)]+1 & & y=2 \cos [36 x]+1
\end{aligned}
$$

$$
\begin{aligned}
& y=2.5 \sin (x-180)-3.5 \\
& y=-2.5 \cos (x-90)-3.5 \quad y=2.5 \cos (x+90)-3.5 \\
& y=2.5 \cos (x-270)-3.5 \\
& \begin{array}{l}
\text { axis of the } \\
\text { curve } \\
c=\frac{3+(-1)}{2}=1
\end{array} \\
& C=1 \\
& \text { amplitude } \\
& 2 \left\lvert\, \begin{array}{c}
\text { Period }=\frac{360}{k} \\
10=\frac{360}{k}
\end{array}\right. \\
& k=\frac{360}{10}=36 \quad k=36
\end{aligned}
$$

