Meet the Quadrilateral Family

Go to http://bit.ly/classifyingquadrilaterals

- Complete the activity online. Once it is finished, it loops back to the beginning again - so you can stop once it repeats.
- Fill in the blanks as you complete the activity.

Examine the relationship in the diagonals of the quadrilaterals.

1. Which ones are equal in length?

rectangle
2. Which ones are perpendicular?
3. Which ones bisect each other? equally
\qquad square, rhombus
\qquad rhombus
\qquad

What am PP

My opposite sides are parallel and equal in length:
My opposite sides are parallel and equal in length, and my sides are perpendicular:

My opposite sides are parallel and all sides are equal in length:
My opposite sides are parallel, all sides are equal in length, and my sides are perpendicular:
Two of my sides are parallel, but not equal in length. The other two sides are equal in length but not parallel:
My diagonals are perpendicular and equal:
My diagonals are equal but not perpendicular:

parallelogram

 rhombus \qquad

square

isosceles trapezoid square porollelogro,n

Trapezoid (US)
Trapezium (UK)

Rhombus

Trapezoid

Square

Classifying Quadrilaterals

Problem A:

A quadrilateral has these coordinates: $\mathrm{M}(8,-3), \mathrm{A}(-2,-8)$, $\mathrm{T}(-4,3)$, and $\mathrm{H}(6,8)$.
Graph this quadrilateral and complete the following questions.

1. Determine the length of each side.

MA	AT	TH	HM
$d=\sqrt{(-2-8)^{2}+(-8+3)^{2}}$	$d=\sqrt{(-4+2)^{2}+(3+8)^{2}}$	$d=\sqrt{(-4-6)^{2}+(3-8)^{2}}$	$d=\sqrt{(6-8)^{2}+(8+3)^{2}}$
	$=\sqrt{100+25}$	$=\sqrt{4+121}$	$=\sqrt{125}$
	$=\sqrt{125}$		$=\sqrt{125+25}$
	$=\sqrt{4+121}$		

2. Determine the slope of each side.

MA	AT	TH	HM
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3+8}{8+2}$	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3+8}{-4+2}$	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-3}{6+4}$	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8+3}{6-8}$
$m=\frac{5}{10}=1 / 2$	$m=\frac{11}{-2}$	$m=5 / 10=1 / 2$	$m=\frac{11}{-2}$
$m=0.5$	$m=-5.5$	$m=0.5$	$m=-5.5$

3. Is MATH a parallelogram? Justify your answer with proper calculations (IE: how do you know). If's because opposite sides ore parallel because they hove the same slope and different y-int.
4. Is MATH a rectangle? Justify your answer with proper calculations (IE: how do you know). Mo becouse $m_{M A} \times m_{A T} \neq-1$

$$
0.5 x-5.5=-2.75
$$

5. Is MATH a rhombus? Justify your answer with proper calculations (IE: how do you know). Yes, because each side ore equal \& parallel.
6. Is MATH a square? Justify your answer with proper calculations (IE: how do you know). It's not a square because the angle between line segments ore not right. For example $m_{M A} \times m_{A T}=-2.75$
7. Draw in the diagonals. Obviously, they are unequal in length. Verify this algebraically (IE: calculate the length of each diagonal and show they are unequal).

8. Determine the midpoint of each diagonal. What do you notice? What does this mean?

$$
\begin{array}{ll}
\lambda_{A T}=\left(\frac{8-4}{2}, \frac{-3+3}{2}\right) & \lambda_{A H}=\left(\frac{6-2}{2}, \frac{8-8}{2}\right) \\
M_{A T}=(2,0) & M_{A H}=(2,0)
\end{array}
$$

x ${ }^{\prime}$ idpoints of each diagonal are also POI
Diagonals bisect each other equally

Problem B:
Points $\mathrm{G}(-6,7), \mathrm{O}(4,3), \mathrm{N}(2,-2)$, and $\mathrm{E}(-8,2)$ form a quadrilateral.

1. Classify the quadrilateral.
slope of What'syour elan? ${ }^{\text {IE }}$ in nat do you length to calculate? Porch side

2. Join the midpoints of each side to form another quadrilateral.

What's your plan? IE: What do you need to calculate?

$$
\begin{aligned}
F(x, y) & =\left(\frac{-6+4}{2}, \frac{7+3}{2}\right) & S(x, y) & =\left(-\frac{8+2}{2}, \frac{2-2}{2}\right) \\
F & =(-1,5) & S & =(-3,0) \\
I(x y) & =\left(\frac{4+2}{2}, \frac{3-2}{2}\right) & H(x, y) & =\left(\frac{-6-8}{2}, \frac{7+2}{2}\right) \\
I & =\left(3, \frac{1}{2}\right) & H & =\left(-7, \frac{9}{2}\right)
\end{aligned}
$$

3. Verify that this 'midpoint' quadrilateral is a parallelogram.

What's your plan? IE: What do you need to calculate?

$$
\begin{array}{ll}
m_{F H}=m_{\mid s} & M_{F \mid}=m_{S H} \\
|F H|=||s| & |F||=|S H|
\end{array}
$$

\therefore It's a para llelogram.

