\qquad

Review: Find the equation in standard form of the quadratic function with zeros $5+\sqrt{2}$ and $5 \div \sqrt{2}$, and passes through the point (8, -3). Factored form: $y=a(x-r)(x-s)$.

$$
\begin{aligned}
r & =(5+\sqrt{2}) \text { and } s=(5-\sqrt{2}) \\
y & =a(x-r)(x-s) \\
-3 & =a[8-(5+\sqrt{2})][8-(5-\sqrt{2})] \\
-3 & =a(8-5-\sqrt{2})(8-5+\sqrt{2}) \\
-3 & =a(3-\sqrt{2})(3+\sqrt{2}) \\
-3 & =a(9+3 \sqrt{2}-3 \sqrt{2}-2) \\
-3 & =a(7) \\
-3 / 7 & =a
\end{aligned}
$$

LESSON: SOLVING QUADRATIC EQUATIONS
Solve means to find numerical value (s) for " x ".

METHODS
There are 3 widely used methods for solving quadratic equations. Quadratic equations generally have 2 solutions (roots, x -intercepts).

1) ISOLATION/SQUARE ROOT PROPERTY

Solve for x : $\quad x^{2}-16=0$

$\mathbf{1}$	Isolate the term that contains the squared variable.	$x^{2}=16$
2.	Take the square root of both sides and solve for the variable.	$\sqrt{x^{2}}=\sqrt{16}$
3.	Remember the possibility of two roots for every square root, one positive and one negative. Place a \pm sign in front of the side containing the constant before you take the square root of that side.	$x= \pm 4$

Solve the following function using the method of isolation:

$$
\begin{aligned}
& \begin{aligned}
(2 m+4)^{2}-1 & =7 \\
\sqrt{(2 m+4)^{2}} & =\sqrt{8}
\end{aligned} \\
& (2 m+4)=\sqrt{2 \cdot 2 \cdot 2} \\
& 2 m+4=\mp 2 \sqrt{2} \\
& m=\sqrt{2}-2 \\
& 2 m+4=-2 \sqrt{2}^{-4} \\
& \frac{2 m}{2}=\frac{-2 \sqrt{2}}{2} \frac{-4}{2} \\
& m=-\sqrt{2}-2
\end{aligned}
$$

: The solutions are $\sqrt{2}-2$ or $-\sqrt{2}-2$
\qquad

Method 2: FACTORING Solve for x :

$$
x^{2}-x=6
$$

$$
\begin{aligned}
& x=3, \quad x=-2 \\
& x=3 \text { and } x=-2 \text { are called roots. These } \\
& \text { are roots of the equation } x^{2}-x-6=0 .
\end{aligned}
$$

$$
\text { are roots of the equation } x^{2}-x-6=0
$$

$$
\begin{aligned}
\text { Try: } 2 x(x-1) & =-x+15 \\
2 x^{2}-2 x & =-x+15 \\
2 x^{2}-2 x+x-15 & =0 \\
2 x^{2}-x-15 & =0 \\
\frac{(2 x-6)(2 x+5)}{2} & =0 \\
\frac{2(x-3)(2 x+5)}{x} & =0 \\
(x-3)(2 x+5) & =0
\end{aligned}
$$

$$
\begin{array}{c|c|c}
M & A & N \\
\hline-30 & -1 & 5,-6
\end{array}
$$

$$
\begin{array}{rlrl}
x-3=0 & \text { or } \quad 2 x+5 & =0 \\
x=3 & 2 x & =5 \\
x & =-5 / 2
\end{array}
$$

3) QUADRATIC FORMULA

Solve the following using quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Determine the x - intercepts of the function $f(x)=5 x^{2}+2 x-1$ using the quadratic formula. Leave answers in exact reduced radical form (not decimal form).

$$
\begin{aligned}
& 5 x^{2}+2 x-1=0 \\
x= & \frac{-2 \mp \sqrt{4-4(5)(-1)}}{10} \\
x= & \frac{-2 \mp \sqrt{24}}{10} \\
= & \frac{-2 \mp \sqrt{6 \cdot 4}}{10} \\
= & \frac{-2 \mp 2 \sqrt{6}}{10}
\end{aligned}
$$

$$
\begin{aligned}
x_{1} & =\frac{-2+2 \sqrt{6}}{10} \\
& =\frac{2(-1+\sqrt{6})}{516} \\
& =\frac{-1+\sqrt{6}}{5}
\end{aligned}
$$

$$
\begin{aligned}
x_{2} & =\frac{-2-2 \sqrt{6}}{10} \\
& =\frac{2(-1-\sqrt{6})}{10} \\
& =\frac{-1-\sqrt{6}}{5}
\end{aligned}
$$

\therefore The solutions are
\qquad

PRACTICE

1. The town decides to build a rectangular fence around a playground. The playground without the fence measures 60 m by 40 m ; however after the building of the fence, the area gets doubled. The designers put the fence around the playground with a uniform distance. Calculate the distance between the playground and the fence.
2. A factory is to be built on lot that measures 90 m by 70 m . A lawn of uniform width and with an area of $3900 \mathrm{~m}^{2}$ must surround the factory. What dimensions must the factory have?

$$
\begin{aligned}
(90-2 x)(70-2 x) & =90 \times 70-3900 \\
2(45-x)(2)(35-x) & =6300-3900 \\
4(45-x)(35-x) & =2400 \\
(45-x)(35-x) & =600 \\
1575-45 x-35 x+x^{2} & =600 \\
x^{2}-80 x+975 & =0
\end{aligned}
$$

$$
\begin{aligned}
\text { lions must the factory have? } \\
70-3900 \\
-3900
\end{aligned} \quad \begin{aligned}
& X=\frac{-(-80) \mp \sqrt{(-80)^{2}-4(1)(975)}}{2(1)} \\
&=\frac{80 \mp \sqrt{2500}}{2} \\
&
\end{aligned}
$$

$\therefore 69 \mathrm{~m}$ would not make sene $x_{1}=\frac{80+50}{2}=65 \quad \therefore 67 \mathrm{~m}$ would \quad in this context; therefor,

$$
x_{2}=\frac{80-50}{2}=15
$$ the lawn's width is 15 m The factor's dimensions are 60

and 40 m .
2. Determine the x-intercepts of the function $f(x)=5 x^{2}+2 x-1$ using the quadratic equation. Leave answers in exact reduced radical form (not decimal form).

