SQUARE ROOTS \& PERFECT SQUARES

To understand square roots, first let's take a look at squares.
How to Square a Number: Just multiply it by itself.
Squares from 1^{2} to 12^{2}

$$
\begin{aligned}
& 1 \text { Squared }=1^{2}=1 \times 1=1 \\
& 2 \text { Squared }=2^{2}=2 \times 2=4 \\
& 3 \text { Squared }=3^{2}=3 \times 3=9 \\
& 4 \text { Squared }=4^{2}=4 \times 4=16 \\
& 5 \text { Squared }=5^{2}=5 \times 5=25 \\
& 6 \text { Squared }=6^{2}=6 \times 6=36 \\
& 7 \text { Squared }=7^{2}=7 \times 7=49 \\
& 8 \text { Squared }=8^{2}=8 \times 8=64 \\
& 9 \text { Squared }=9^{2}=9 \times 9=81 \\
& 10 \text { Squared }=10^{2}=10 \times 10=100 \\
& 11 \text { Squared }=11^{2}=11 \times 11=121 \\
& 12 \text { Squared }=12^{2}=12 \times 12=144
\end{aligned}
$$

PERFECT SQUARES

1 Squared $=1^{2}=1 \times 1=\mathbf{1}$	$\begin{array}{llllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$												
2 Squared $=2^{2}=2 \times 2=4$	$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$												
3 Squared $=3^{2}=3 \times 3=9$													
4 Squared $=4^{2}=4 \times 4=16$													
5 Squared $=5^{2}=5 \times 5=25$													
6 Squared $=6^{2}=6 \times 6=36$	$\begin{array}{lllllllllllll}\mathbf{5} & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60 \\ 6 & 6 & 12 & 18 & 24 & 30 & 30 & 42 & 48 & 54 & 60 & 66 & 72\end{array}$												
7 Squared $=7^{2}=7 \times 7=49$													
7 Squared $=7^{2}=7 \times 7=49$ $8 \times 8 \quad 64$	$7 \begin{array}{llllllllllllllllllllll}7 & 7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 & 77 & 84\end{array}$												
8 Squared $=8^{2}=8 \times 8$	8												
9 Squared $=9^{2}=9 \times 9=81$	$\begin{array}{llllllllllllllllll}9 & 9 & 18 & 27 & 36 & 45 & 54 & 63 & 72 & 81 & 90 & 99 & 108\end{array}$												
10 Squared $=10^{2}=10 \times 10=100$													
11 Squared $=11^{2}=\|\|\times\|\|=12\|$	$11 \begin{array}{llllllllllllll}11 & 11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 99 & 110 & 121 & 132\end{array}$												
12 Squared $=12^{2}=12 \times 12=144$	$\begin{array}{lllllllllllll}12 & 12 & 24 & 36 & 48 & 60 & 72 & 84 & 96 & 108 & 120 & 13 & 144\end{array}$												

Square Roots:

A square root goes the other way:

3 squared is 9 , so a square root of 9 is 3
A square root of a number is a value that can be multiplied by itself to give the original number.
A square root of $\mathbf{9}$ is $\mathbf{3}$, because when $\mathbf{3}$ is multiplied by itself we get $\mathbf{9}$.
It is like asking "what can we multiply by itself to get this?"
The Square Root Symbol
$\sqrt{ }$ This is the special symbol that means "square root". It is called the radical.

OPERATIONS WITH SQUARE ROOTS

Just follow the same BEDMAS rule when operating with fractions.
Simplify each expression:
a) $\sqrt{25}+\sqrt{16} \quad$ Read: Add the square roots of 25 and 16.
$=5+4$
$=9$
b) $\sqrt{3+6} \quad$ Read: Square root the sum of 3 and 6.
$=\sqrt{9}$
$=3$
c) $\sqrt{31+\sqrt{25}} \quad$ Read: Square root the sum of 31 and square root of 25 .
$\begin{aligned} & =\sqrt{31+5} \\ & =\sqrt{36}\end{aligned} \quad \rightarrow=6$
d) $\sqrt{\sqrt{169}+\sqrt{144}}$ Read: Square root the sum of square root of 169 and square root of 144 .
$=\sqrt{13+12} \quad \rightarrow=5$
$=\sqrt{25}$
e) $2 \sqrt{25} \quad$ Read: 2 times square root 25 .
$=2 \cdot(5)$
$=10$
f) $3 \sqrt{100}+2 \sqrt{16}$

$$
=3 \cdot(10)+2(4)
$$

$$
=30+8
$$

$$
=38
$$

$$
\begin{aligned}
& \text { g) } \sqrt{12-\sqrt{6+\sqrt{8+1}}} \text { from Right heft } \\
= & \sqrt{12-\sqrt{6+\sqrt{9}}} \\
= & \sqrt{12-\sqrt{6+3}} \\
= & \sqrt{12-\sqrt{9}} \\
= & \sqrt{12-3} \\
= & \sqrt{9}
\end{aligned}
$$

