Date:
Unit 1: Intro to Functions

INVESTIGATION: Type $y=a f(x)$

1. On the same set of axes, sketch the graphs of $f(x)=\sqrt{x}, y=2 f(x)$ and $y=\frac{1}{2} f(x)$.

x	\sqrt{x}	$2 \sqrt{x}$	$\frac{1}{2} \sqrt{x}$
1	$\sqrt{0}=0$	$2 \sqrt{0}$ $=0$	$0.5 \sqrt{0}$ $=0$
4	$\sqrt{4}=2$	$2 \sqrt{1}$ $=2$	$0.5 \sqrt{1}$ $=0.5$
9	$\sqrt{9}=3$	$0.5 \sqrt{4}$ $=1$ $=6$	
$0.5 \sqrt{9}$			
$=1.5$			

If $y=f(x)$ is transformed to $y=a f(x)$, where a is a number, describe the transformation:
a) If $|a|>1$, then the parent function is stretcheolvertically by a factor of "a|".
b) If $0<|a|<1$, then it is compressed_vertically _bafo |a|

Any point (x, y) under this transformation becomes ($X, Q Y$)

* MAPPING NOTATION

INVESTIGATION: Type $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{k x})$

1. On the same set of axes, sketch the graphs of $f(x)=\sqrt{x}, y=f(2 x)$ and $y=f\left(\frac{1}{2} x\right)$.
Q)

x	$\sqrt{2 x}$ 0$\sqrt{20}$ $=0$
0.5	$\sqrt{2 \times 0.5}$ $=1$
2	$\sqrt{22}$ $=2$
4.5	$\sqrt{2 \times 4} .5$ $=3$

b)

x	$\sqrt{\frac{1}{2} x}$
0	$\sqrt{0.5 \times 0}$ $=0$
2	1
8	2
18	3

4. If $y=f(x)$ is transformed to $y=f(k x)$, where k is a number, describe the transformation:

\square

a) If $|\mathrm{k}|>1$, then the parent function is Compressedhorizontally by factor of " $\frac{1}{|k|}$ ".
b) If $0<|\mathrm{k}|<1$, then it is stretched horizontally_bafo $/ /|k|$

Any point (x, y) under this transformation becomes $\left(\frac{x}{k}, y\right)$.

11 Academic
Day 7: Stretches, Compressions \& Reflections

INVESTIGATION: Type $\boldsymbol{y}=-\boldsymbol{f}(\boldsymbol{x})$

1. On the same set of axes, sketch the graphs of $f(x)$ and $-f(x)$.
a. $f(x)=|x|$
b. $f(x)=\sqrt{x}$

2. If $y=f(x)$ is transformed to $y=-f(x)$, where a is a negative number, describe the transformation:

I noticed that the graph is reflected about the " $\underline{\text { " }}$ axis.
Any point (x, y) under this transformation becomes ($x,-y$).

INVESTIGATION: Type $\boldsymbol{y}=\boldsymbol{f}(-\boldsymbol{x})$
3. On the same set of axes, sketch the graphs of $f(x)$ and $f(-x)$.
horizontally reflected

4. If $y=f(x)$ is transformed to $y=f(k x)$, describe the transformation:
a) If $\mathrm{k}=-1$, then the graph is reflected about the " y " axis.

Any point (x, y) under this transformation becomes $(-x, y)$. if it's vertical transformation only "y" change in horizontal il il "x" chonpes

11 Academic
Day 7: Stretches, Compressions \& Reflections

Date:

$\frac{\text { Vertical comp }}{(x, y) \rightarrow\left(x, \frac{1}{2} y\right)}$
$(-4,0) \rightarrow(-4,0.5 \cdot 0)=(-4,0)$
$(-2,2) \rightarrow(-2,0.5 \cdot 2)=(-2,1)$

(c) $g(x)=\frac{1}{2} f(x)$
(a) $f(x)$

(b) $g(x)=2 f(x) \quad(x, y) \rightarrow(x,-a y)$

(d) $g(x)=-3 f(x)$

$$
\begin{aligned}
\text { if } k & =\frac{1}{2} \\
\text { then } \frac{1}{k} & =2
\end{aligned}
$$

(a) $f(x)$
$(x, y) \rightarrow(2 x, y)$

$$
(-4,0) \rightarrow(2 \cdot-4,0)=(-8,0)
$$

$$
(-2,2) \rightarrow(2 \cdot-2,2)=(-4,2)
$$

$$
(2,2) \rightarrow(2 \cdot 2,2)=(4,2)
$$

$$
(4,0) \rightarrow(2 \cdot 4,0)=(8,0)
$$

Horizontal Stretches of $f(x) \quad(x, y) \rightarrow\left(\frac{x}{k}, y\right) \quad f(2 x)$

(c) $g(x)=f\left(\frac{1}{2} x\right)$

(b) $g(x)=f(2 x)$

(d) $g(x)=-f(2 x)$

Let $f(x)=x^{2}$.
What do the following transformations represent in terms of stretches, reflections, and shifts?
a. $2 f(x)$
d. $-f(2 x)$
b. $3 f(x)$
e. $f\left(\frac{1}{3} x\right)+4$
c. $\frac{1}{2} f(x)$
f. $-2 f(x-1)$

Verify your answers using DESMOS or graphing calculator.
a). if $f(x)=x^{2}$
then $2 f(x)=2 x^{2}$ it's a vertical stretch by a factor of 2
d) - Vertical reflection pout "x" axis

- horizontal compresilon bate $1 / 2$
(b) $3 f(x)$
vertical stretch bafo 3
c) $\frac{1}{2} f(x)$ vertical compression bolo $1 / 2$
e) -horizontal stretch bafo 3
- shift 4 units up.
f) $-2 f(x-1)$
vertical reflection about the "x" axis vertical stretch bolo 2 whit I unit right

