\qquad

$$
y=a(x-r)(x-s)
$$

Summary:

To find the vertex by averaging the zeros, you:
a. average the zeros $(x-i n t)$ to get the x-coordinate
b. sub the " x " coordinate into the equ. to get the y-coordinate.

Examples

1. Given $y=1 / 2(x-2)(x+4)$,
a. State the zeros: $\quad x=2 \quad x=-4$
b. Determine the x -coordinate of the vertex: (average the zeros)

$$
\frac{-4+2}{2}=\frac{-2}{2}=-1
$$

b. Determine the y-coordinate of the vertex:
(substitute)
$y=0.5(-1-2)(-1+4)$
$=0.5(-3)(3)$
$=-4.5$
c. Graph using the zeros and vertex.

$$
\begin{aligned}
& V(-1,-4.5) \\
& \text { Steps } 0.5,1.5,2.5
\end{aligned}
$$

2. Given $\mathrm{y}=2(\mathrm{x}+5)(\mathrm{x}+1)$,
a. State the zeros: $\quad x=-5 \quad x=-1$
b. Determine the x -coordinate of the vertex:
(average the zeros)

$$
\frac{-5+(-1)}{2}=-3
$$

b. Determine the y-coordinate of the vertex:
(substitute)

$$
\begin{aligned}
y & =2(-3+5)(-3+1) \\
& =2(2)(-2) \\
& =-8
\end{aligned}
$$

c. Graph using the zeros and vertex.
$V(-3,-8)$
Steps $=2,6,10$
\qquad
3. Determine the zeros and vertex of $y=-3 x^{2}+12 x$ by averaging the zeros. You can find the zeros by factoring or using the formula.
Step: Solve the equation to find zeros
" x " coordinate of vertex
Step 2

$$
x=\frac{0+4}{2}=2
$$

step) " 4 " coordinate of vertex sub " 2 " for " x "

$$
\begin{aligned}
y & =-3(2)^{2}+12(2) \\
& =-3(4)+24
\end{aligned}
$$

$$
\begin{aligned}
0 & =-3 x^{2}+12 x \quad \text { CF }=-3 x \\
0 & =-3 x(x-4) \\
-3 x & =0 \quad x \quad x-4=0 \quad\{0,4\} \\
x & =0 \quad x=4 \quad x \quad
\end{aligned}
$$

$$
=-3(4)+24 \quad \therefore \text { Vertex is }(2,12)
$$

$$
=-12+24 \text { Zero or }\{0,4\}
$$

$2 x^{2}-12 x-32 y=12$
4. Determine the zeros and vertex of $y=2 x^{2}-12 x-32$ by averaging the zeros. You can find the zeros by factoring or using the formula.
Ster

$$
\begin{array}{r}
y=2\left(x^{2}-6 x-16\right) \\
y=2(x+2)(x-8) \\
\text { zeros } \Rightarrow x+\frac{2}{}=0 \\
x=-2 \\
x-8=0 \\
x=8
\end{array}
$$

Step

$$
x=\frac{-2+8}{2}=3
$$

$$
y=2(3)^{2}-12(3)-32
$$

$$
=2(9)-36-32
$$

$$
=18-68
$$

$$
\begin{aligned}
& =18-68 \quad \therefore \text { Vertex is }(3,-50) \\
& =-50 \quad \therefore 2 e r
\end{aligned}
$$

zeros ore $\{-2,8\}$
5. Determine the zeros and vertex of $y=4 x^{2}-16 x+7$ by averaging the zeros. You can find the zeros by factoring or using the formula.

Steel Solve the equation

$$
\begin{aligned}
& O=4 x^{2}-16 x+7 \quad \mu|A| N \\
& 0=4 x^{2}-2 x-14 x+7 \quad 28|-16|-2,-14 \\
& 0=2 x(2 x-1)-7(2 x-1) \\
& 0=(2 x-1)(2 x-7) \\
& \begin{array}{l}
2 x-1=0 \quad 2 x-7=0 \\
x=1 / 2 \quad x=7 / 2
\end{array}
\end{aligned}
$$

Step 2:

$$
\begin{aligned}
x & =\frac{0.5+3.5}{2}=2 \\
y & =4(2)^{2}-16(2)+7 \\
& =16-32+7 \\
& =-9
\end{aligned}
$$

\therefore Vertex is $(2,-9)$ Zeros or $(0.5,3.5)$

Application: When a football is kicked with a vertical speed of $20 \mathrm{~m} / \mathrm{s}$, its height h metres, after t seconds is given by the equation $h=-5 t^{2}+20 t$. Determine the maximum height of the ball by averaging the zeros. You can find the zeros by factoring or using the formula.
Step 1: Solve the eau-

$$
\begin{aligned}
0 & =-5 t^{2}+20 t \quad G C F=-5 t \\
0 & =-5 t(t-4) \\
-\quad \downarrow \quad & \quad \begin{array}{l}
-4 \\
-5 t
\end{array}=0 \quad t=0
\end{aligned}
$$

$$
\text { Step 2: } \begin{aligned}
x & =\frac{0+4}{2}=\frac{4}{2}=2 \\
y & =-5(2)^{2}+20(2) \\
& =-5(4)+40 \\
& =-20+20 \\
& =20
\end{aligned}
$$

\therefore Vertex is $(2,20)$
which peons the boll reaches max height is 2 sec.

