

The *a* affects the graph y = f(x) by stretching or compressing _____ by a factor of *a*.

If the a is negative, there is a vertical reflection about the _____.

The d affects the graph y = f(x) by translating ______ d units.

The c affects the graph y = f(x) by translating _____ c units.

The *k* affects the graph y = f(x) by stretching or compressing ______ by a factor of $\frac{1}{k}$. If the *k* is negative, there is a horizontal reflection about the ______.

*Does the order of transformations matter?

Graphing: Mapping Notation

If you can successfully figure out the mapping notation for the transformed function, the graphing part is rather easy. Here is the formula below.

$$y = af[k(x-d)] + c$$
(x,y) $\rightarrow (\frac{x}{k} + d, ay + c)$

Ex1 State the mapping notation for: y = 3f[-2(x-1)] + 1

Ex2 State the mapping notation for: $y = -\frac{1}{2}f\left[-\frac{1}{2}(x+1)\right] - 1$

Example 1 - Sketching Graphs of Transformed Functions

1. Given the graph of f(x) = |x|, state the mapping notation for g(x) = -2f(x-6) + 4 using transformations.

2. Using transformations, sketch the graph of $f(x) = \sqrt{2x + 4}$. **Hint:** Rewrite 2x+4 in factored form to determine the horizontal translation.

- i	i i		i i	i i		V i	i	i i	i	i i	i	i i	i i	i i
				1	8		1							
				+	Ÿ .									
				+										
				÷	6		·							
							1	l						
1	[]]	[]]		1	4		1							
			+	+		!								
				+										
				÷	2		- 							
		L.J	L.J	i)			. i	L						
1	[]]	[]]	1 1 1	1	0		1	[x
	-8	-6	-4	-2	Ŭ	0	2		4		6		8	
	-8	-6	-4	-2		0	2		4		6		8	
	-8	-6	-4	-2	-2	0	2		4		6		8	
	-8	-6	-4	-2	-2	0	2		4		6		8	
	-8	-6	-4	-2	-2.	0	2		4		6		8	
	-8	-6	-4	-2	-2 -4	0	2		4		6		8	
	-8	-6	-4	-2	-2.	0	2		4		6		8	
	-8	-6	-4	-2	-2 -4 -6	0	2		4		6		8	
	-8	-6	-4	-2	-2 -4 -6	0	2		4		6		8	
	-8	-6		-2	-2 -4 -6	0	2		4		6		8	
		-6		-2	2 4 6	0	2		4		6		8	

Example 2 – Writing Equations of Transformed Functions

- 1. The function y = f(x) has been transformed into y = af(k(x d)) + c. Write the following in the appropriate form:
 - (a) a vertical compression by a factor of 1/2, a reflection in the x-axis and a translation 3 units right.
 - (b) a vertical stretch by a factor of 3, a horizontal stretch by a factor of 2, a translation left 5 and up 4, and a reflection in the y-axis.

Practice Transformations Given an Equation

Graph each of the following functions by:

- a) Graphing the base function first. $\left(y = x^2, y = \sqrt{x}, y = x^3, y = |x|, y = \frac{1}{x}\right)$
- b) Listing the transformations.
- c) Applying the transformations to the base function.

1)
$$y = 2(x+1)^2 - 1$$
 2) $y = \frac{2}{x+2} + 1$ **3**) $y = (2x-2)^3 - 1$

-					
-					

cademic 8: Combinations of Transfor	Date: Unit 1: Intro to Functio			
4) $y = -\sqrt{x-2} + 1$	$5) y = 2\sqrt{3x}$	6) $y = 3 x+1 +1$		
7) $y = \left \frac{1}{2}x - \frac{1}{2}\right $	8) $y = -\left(-\frac{1}{2}(x+1)\right)^3$	$y = 2\sqrt{2x+2} - 2$		

 ••••••	••••••	•••••	******	•••••	•••••	 	•••••

Practice Transformations Given a Graph

List the transformations.

Apply the transformations to key points on the graph.

1)
$$y = 3g(-2(x-1))+1$$

2) $y = -f(2(x+1))$

5)
$$y = f(3x-6)$$
 6) $y = f(-2x+4)$

