1. Solve the system using the method of elimination
(2 Eliminate " $a^{\prime \prime}$)

$$
\left.\left.\begin{array}{l}
\text { Multiply } \\
\text { both equations } \\
\text { by lo first }
\end{array}\right) \quad \begin{array}{c}
b^{y}(0.1 a-0.4 b=1.9) \Rightarrow(a-4 b=19) \\
l^{x}(0.4 a+0.5 b=-0.8) \Rightarrow 4 a+5 b=-8
\end{array}\right\} \begin{aligned}
& 4 a-16 b=76 \\
& 4 a+5 b=-8
\end{aligned}
$$

$$
\begin{aligned}
4 a+5 b & =-8 \\
4 a+5(-4) & =-8 \\
4 a-20 & =-8 \\
4 a & =-8+20 \\
\frac{4 a}{4} & =\frac{12}{4} \\
a & =3
\end{aligned}
$$

\therefore The solution is $a=3$ when $b=-4$
2. Solve by elimination

LCD 3 and 4 is $12 \rightarrow 12 \times\left(\frac{4 a}{3}-\frac{b}{4}=9\right) \quad \begin{aligned} & 4 \\ & 12 \cdot \frac{49}{2}-12 \cdot \frac{b}{4}=12.9\end{aligned}$
$A C D 3$ and 1 is $\left.6 \longrightarrow 6 \times\left(\frac{5 a}{6}+\frac{b}{1}=1\right) \Rightarrow \frac{5 a}{6}+6 b=6 \cdot 1\right)$

$$
\begin{aligned}
& \frac{16 a-3 b}{} 16(6)-3(-4) \\
= & 0.6+12 \\
= & 108 \quad \alpha S=R S
\end{aligned}
$$

\therefore The solution is $(6,-4)$

