Solving Exponential Equations
An exponential equation is one in which the $u \cap$ @ $\cap \omega \bigcap_{n}$ is contained within an exponent or exponents.
As with all types of equations, algebra can be used to determine an exact solution for an exponential equation. When the powers on either side of the equation have the same base, the exponents can be set equal and the resulting equation solved.
In other words:
if $a^{x}=a^{y}$
then $x=y$

Ex1. Solve each of the following:

$$
\begin{aligned}
& \text { a) } 3^{2 x}=81 \\
& 3^{2 x}=3^{4} \\
& 2 x=4 \\
& x=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } 3^{x}=9^{x-1} \\
& 3^{x}=\left(3^{2}\right)^{x-1} \\
& 3^{x}=3^{2(x-1)} \\
& 3^{x}=3^{2 x-2} \\
& x=2 x-2 \\
& 2=x
\end{aligned}
$$

e) $2^{x+2}-2^{x}=48$, let's express it in $\begin{array}{ll}2^{x} \cdot 2^{2}-2^{x}=48: & \text { factored form } \\ \underbrace{4 \cdot 2^{x}-2^{x}}=48: \begin{array}{l}2^{x} \text { is a variable } \\ \text { You have } 4 \cdot 2^{x} \text { and } \\ \text { are subtracting } 1 \cdot 2^{x}\end{array} \\ \begin{array}{l}\text { ar } \\ \text { Thus we have } 3 \cdot 2^{x}\end{array}\end{array}$

$$
\begin{array}{ll}
\underbrace{4 \cdot 2^{x}-2^{x}}=48 & \begin{array}{l}
2^{x} \text { is a variable } \\
\text { You have } 4 \cdot 2^{x} \text { and } \\
\text { are subtracting } 1 \cdot 2^{x}
\end{array} \\
\frac{3 \cdot 2^{x}}{3}=\frac{48}{3} & \begin{array}{l}
\text { Thus we have } 3 \cdot 2^{x}
\end{array} \\
2^{x}=16 & \text { Express } 16 \text { as power } \\
2^{x}=2^{4} & \\
x=4 &
\end{array}
$$

e) $2^{x+2}-2^{x}=48$
$2^{x} \cdot 2^{2}-2^{x}=48$

$$
\therefore x \text { is } 4
$$

b) $5^{2 x-1}=\frac{1}{125}$

$$
\text { b) } \begin{array}{rr|l}
5^{2 x-1} & =\frac{1}{125} & \left.\begin{array}{r|r|l}
125 & 5 \\
5^{2 x-1} & =(125)^{-1} & 25 \\
5 \\
5^{2 x-1} & =\left(5^{3}\right)^{-1} & 5 \\
5 & 5 x-1
\end{array}\right\} 5^{3} \\
-2 x-3
\end{array}
$$

$$
\text { if } 5^{2 x-1}=5^{-3}
$$

then $2 x-1=-3$

$$
\text { d) } \begin{array}{rl}
\left.\frac{4\left(2^{x}\right)}{4}\right) & =\frac{32}{4} \\
2^{x} & =8 \\
2^{x} & =2^{3} \\
x & x
\end{array}
$$

$$
\begin{aligned}
& \text { f) } 2^{2 x}-33\left(2^{x}\right)+32=0 \\
& \left(2^{x}\right)^{2}-33\left(2^{x}\right)+32=0 \quad \text { Let " } a \text { " be } 2^{x} \\
& a^{2}-33 a+32=0 \\
& \begin{array}{ll}
(a-1)(a-32)=0 \\
a=1 & a=32 \\
2^{x}=1 & 2^{x}=32
\end{array} \\
& x=0 \\
& \text { f) } 2^{2 x}-33\left(2^{x}\right)+32=0
\end{aligned}
$$

$\therefore x$ is either 0 or 5 .
\qquad

Ex2. Solve each of the following:
a) $2^{x+1}+3\left(2^{x}\right)=80$

$$
2^{x} \cdot 2^{1}+3\left(2^{x}\right)=80
$$

$$
2\left(2^{x}\right)+3\left(2^{x}\right)=80
$$

To see it better

$$
2(a)+3(a)=80
$$ replace 2^{x} with " " $^{\prime}$ $\begin{aligned} \frac{5(a)}{5} & =\frac{80}{5} \\ a & =16\end{aligned}$ $2^{x}=2^{4}$

$$
\begin{aligned}
& 2^{x}=2^{4} \\
& x=4 \quad \therefore x \text { is } 4
\end{aligned}
$$

c) $7\left(2^{3 x}\right)-3=445$

$$
\left.\begin{array}{rl}
\frac{7\left(2^{3 x}\right)}{7} & =\frac{448}{7} \\
& 64 \\
32 & 1 \\
2 & 2 \\
2 x & 8 \\
2 \\
2^{3 x} & =64 \\
2^{3 x} & =2^{6} \\
2 x & 1
\end{array}\right\} 2^{6}
$$

$$
5^{x^{2}-6 x}=5^{8-4 x}
$$

$$
x^{2}-6 x=8-4 x
$$

$$
x^{2}-2 x-8=0
$$

e) $5\left(3^{x^{2}-x}\right)+2=3647$

$$
5\left(3^{x^{2}-x}\right)=3645
$$

d) 5

$$
\text { d) } \begin{aligned}
& 5^{x^{2}-6 x}=625^{2-x} \\
& 5^{x^{2}-6 x}=\left(5^{4}\right)^{2-x} \\
&
\end{aligned}
$$

$$
(x+2)(x-4)=0
$$

$$
3^{x^{2}-x}=729
$$

$$
\begin{array}{rr|rr|r}
\text { f) } 216^{x-4}=\sqrt{1296} & \left.\begin{array}{r|rr}
36 & 6 & 216 \\
6 & 6 \\
\left(6^{3}\right)^{x-4} & =36 & 1
\end{array} \begin{array}{l}
66 \\
6
\end{array}\right\} \begin{array}{l}
6 \times 6 \times 6 \\
=3^{3}
\end{array} \\
& & 1
\end{array}
$$

if $\left[6^{3 x+2}=6{ }^{2}\right.$

$$
3^{x^{2}-x}=3^{6}
$$

then $3 x-12=2$

$$
x^{2}-x=6
$$

$$
\begin{gathered}
x-x=6 \\
x^{2}-x-6=0 \\
(x+2)(x-3)=0
\end{gathered} \quad \begin{aligned}
& x=3 . \\
& x=-2
\end{aligned}
$$

$$
x=14 / 3 \quad \therefore x \text { is } 14 / 3
$$

g) $\frac{8^{2 x}}{4^{x-1}}=2^{x+1}$
(1) $\frac{\left(2^{3}\right)^{3 x}}{\left(2^{2}\right)^{x-1}}=2^{x+1} \Rightarrow \frac{2^{6 x}}{2^{2 x-2}}=2^{x+1}$
(3)

$$
\Rightarrow 2^{6 x-2 x+2}=2^{x+1}
$$

(4)

$$
2^{4 x+2}=2^{x+1} \Rightarrow \begin{array}{r}
5 x+2=x+1 \\
3 x=-1 \\
x=-1 / 3
\end{array}
$$

$$
\begin{aligned}
& \text { b) }
\end{aligned}
$$

