\qquad

described by $h=-5 t^{2}+30 t$. How long is the ball in the air?

$$
\begin{aligned}
& 0=-5 t^{2}+30 t \quad G C F=-5 t \\
& 0=-5 t(t-6) \\
& -5+=0 \quad \therefore \quad t-6=0 \\
& t=0
\end{aligned}
$$

B. The height, h, in metres, of a football t seconds after Billy Bob throws it off the roof of a building is described by $h=-5 t^{2}+20 t+25$. How long is the ball in the air?,. $0=-5 t^{2}+20 t+25$ $0=-5\left(t^{2}-4 t-5\right)$
$0=-5(t+1)(t-5)$

$$
-t+1=0 \quad t=-1
$$

$\therefore 5 \mathrm{sec}$

$$
-t-5=0
$$

C. The height, h, in metres, of a baseball t sends after Billy Bob hits it with a bat is described by $h=-5 t^{2}+18 t+1$. For how long is the ball in the air?

To find the zeros of $\underline{\mathbf{a} \boldsymbol{x}^{2}+\mathbf{b} \boldsymbol{x}+\mathbf{c}=\mathbf{0} \text {, you can use tins Quadratic Formula: }}$
Example \boldsymbol{B} from above: $\quad \mathbf{a}=-5 \quad \mathrm{~b}=+20 \quad \mathbf{c}=+25$

If you can solve this,

$$
-5
$$

\qquad

Discriminant
Do you see b^{2} - 4ac in the formula above? It is called the Discriminant, because it can "discriminate" between the possible types of answer:

- when b^{2} - 4ac is positive, we get two Real roots (The graph has two x -intercepts)
- when it is zero we get just ONE real root (both answers are the same; the graph has one x-intercept)
- when it is negative we get no Real root

1.

$$
\text { 1. } \quad(-5 k^{-}+\underbrace{+18}_{r})+1=0
$$

$$
\begin{aligned}
& a=\frac{-5}{b} \quad b=\frac{18}{b} \quad c=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x_{1,2}=\frac{-(18) \pm \sqrt{(18)^{2}-4(-5)(1)}}{2(-5)} \\
& x_{1,2}=\frac{-18 \mp \sqrt{344}}{-10} \\
& x_{1,2}=\frac{-18 \mp 18.5}{-10} \\
& x_{1}=\frac{-18+18.5}{-10} \quad x_{2}=\frac{-18-18.5}{-10} \\
& x_{1}=\frac{0.5}{-10} \\
& x_{1}=-0.07
\end{aligned} x_{2}=\frac{-36.5}{-10}
$$

3. $-3 x^{2}+x-7=0$

$$
\begin{gathered}
a=\frac{-3}{} \quad \mathrm{~b}=1 \quad \mathrm{c}=-7 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x_{1,2}=\frac{-1 \mp \sqrt{1^{2}-4(-3)(-7)}}{2(-3)} \rightarrow \text { cont square } \\
x_{1,2}=\frac{-1 \mp \sqrt{-83}}{-6} \rightarrow \text { root a ". number }
\end{gathered}
$$

\therefore no solution.

- Notice when discriminant is -
no solutions.
\qquad

5. A paper airplane follows a parabolic path with $h=-4 t^{2}+11 t+3$, where h is height in metres, and t is time in seconds. Use the quadratic formula to determine how long it takes for the paper airplane to hit the ground. Verify your answer using factoring.

6. The path of one freestyle aerial skier from the top of the kicker (i.e. the ramp) to the landing point can be modeled by $h=-0.2 d^{2}+2.5 d+8$, where h is the height in metres above the landing point and d is the horizontal distance from the kicker.
a. When does the skier land?
does the skier land?

$$
0=-0.2 d^{2}+2.5 d+8
$$

$$
\begin{aligned}
& \begin{array}{l}
O=-0.2 d^{2}+2.5 d+8 \\
a=-0.2 \quad b=2.5 c=8
\end{array} \\
& X_{1,2}=\frac{-2.5 \mp \sqrt{(2.5)^{2}-4(-0.2)(8)}}{2(-0.2)}=\frac{-2.5 \mp \sqrt{12.65}}{-0.4}=\frac{-2.5 \mp 3.6}{-0.4} \int \begin{array}{l}
x_{1}=\frac{-2.5+3.6}{-0.4} \\
\therefore \text { at } 15.25 \mathrm{sec} .
\end{array} \\
& x_{1}=-2.75
\end{aligned}
$$

$$
a=-0.2 \quad b=2.5 \quad c=8
$$

$$
\begin{aligned}
& \text { b. For how long is the skier above a height of } 10 \mathrm{~m} ? \sqrt{(2.5)^{2}-4(-0.2)(-2)} \\
& \left.\begin{array}{l}
10=-0.2 d^{2}+2.5 d+8 \\
0=-0.2 d^{2}+2.5 d+8-10 \\
0=-0.2 d^{2}+2.5 d-2 \\
a=-0.2 b=2.5 c=-2
\end{array}\right\} x_{1,2}=\frac{-2.5 \mp}{2(-0.2)} \begin{array}{l}
x_{1,2}=\frac{-2.5 \mp 0.9}{-0.4} \\
x_{1}=\frac{-2.5+0.9}{-0.4}=4 \\
x_{2}=\frac{-2.5-0.9}{-0.4}=8.5
\end{array} \quad \therefore 8.5-4 \\
& \text { c. } \quad \text { Is it possible for the skier to reach a height of } 20 \mathrm{~m} \text { ? }
\end{aligned}
$$

6. The length of a rectangular garden is 6 more than the width. The area is $27 \mathrm{~m}^{2}$. Use the quadratic formula to determine the dimensions of the garden. Verify your answer using factoring.

$$
\begin{aligned}
& \left.25=-0.2 d^{2}+2.5 d+8\right] x_{1,2}=-2.5 \mp \sqrt{(2.5)^{2}-4(-0.2)(-17)^{-}} \quad-2.5=(\sqrt{-7.35})
\end{aligned}
$$

