

Warm-Up:
Are You Smarter Than an $8^{\text {th }}$ Grader?

$$
a=\text { center }
$$

$$
b=\text { radius }
$$

$$
c=\text { diameter }
$$

$$
\begin{aligned}
& d=\text { circumference } \\
& e=\text { chord }
\end{aligned}
$$

- The radius (r) is the distance from the centre of a circle to a point on the circle.
- All points on the circumference of the circle are equidistant (r units) from the centre.

Log in to Gizmos!

Open: Circles
Click on "Gizmo"

Task 1: The Circle Formula

On the screen, you should see the following circle.

1. What are the coordinates of the centre of the circle?

$$
(0,0)
$$

In the equation at the top: $(x-h)^{2}+(y-k)^{2}=r^{2}$, the value of h and k are the coordinates of the centre of the circle. In this exercise, our centre will always be $(0,0)$, so the equation will be in the form: $x^{2}+y^{2}=r^{2}$.

2. Write down the equation of this blue circle shown on the screen. The equation is found in the blue highlighted box.

- Using the slider, change the value of ' r ' to 6 .

3. Sketch this circle on the same grid and write the equation here. \qquad

- Using the slider, change the value of ' r ' to 2 .

4. Sketch this circle on the same grid and write the equation here. \qquad
5. What does the ' r ' value stand for in the equation? \qquad
radius

- Click Explore geometric definition box to confirm.

6. What is the radius of a circle with the equation $x^{2}+y^{2}=7^{2}$?

Use the Gizmo to check your answer.
$r=7$
7. What would be the equation of a circle with centre $(0,0)$ and radius of 5 ? Use the Gizmo to check your answer.

8. What would happen to the graph of the circle if $r=0$?

Summary: fill in the missing information

Due to the Pythagorean Theorem (and thus the length of a line segment formula as well!), the equation of a circle with centre at $(0,0)$ and radius r is:

Task 2: Applications

A point lies on the circumference of a circle if the distance between the point and the center of the circle is equal to the radius.
9. Use the formula to deterthine the equal circle with centre $(0,0)$ if the point $(5,2)$ is on the circumference.

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Substitute the point $(5,2)$ into the equation for x and y.

$$
(5-0)^{2}+(2-0)^{2}=r^{2}
$$

Solve the equation for r.

$$
\begin{aligned}
& 25+4=r^{2} \\
& 29=r^{2} \\
& \sqrt{29}=r
\end{aligned} \quad r=5.4
$$

Substitute the r back into the formula.

$$
x^{2}+y^{2}=5.4^{2} \text { or } x^{2}+y^{2}=\sqrt{29}^{2}
$$

- Use the slider to change the radius (r) in the Gizmo until the circle passes through the point $(5,2)$.

Verify that your equation was correct.

$$
x^{2}+y^{2}=5,4^{2} \text { or } x^{2}+y^{2}=\sqrt{27}^{2}
$$

2
$<$ less than $>$ greater then
a. If a circle is drawn and point A is INSIDE the circle, what could tbequation be? How could you show this by using the circle formula?
In order for point A to be inside the circle the radius must be minimum $2^{2}+4^{2}=r^{2}$

$$
\begin{aligned}
& \therefore \text { radius must be greater } \\
& \text { than or equal to } \sqrt{20} \\
& r \geqslant \sqrt{12}
\end{aligned}
$$

$$
r \geqslant \sqrt{20} \quad x^{2}+y^{2} \geqslant(\sqrt{20})^{2}
$$

b. If a circle is drawn and point A is OUTSIDE the circle, what could the equation be? How could you show this by using the circle formula?
The radius must be less than $\sqrt{20}$

$$
\begin{aligned}
& x^{2}+y^{2}<r^{2} \\
& x^{2}+y^{2}<(\sqrt{20})^{2}
\end{aligned}
$$

10. Point $A(2,4)$ is on a grid.

