\qquad

1. Find the length of AC.

Step 1: Use $\mathbf{\triangle B C D}$ to find $\mathbf{C D}$
SOH
$\sin 70^{\circ}=\frac{b}{8}$

$$
\begin{aligned}
& b=8 \cdot \sin 70^{\circ} \\
& b=7.5
\end{aligned}
$$

Step 2: Use $\mathbf{\Delta A C D}$ to find $\mathbf{A C}$

$$
\begin{gathered}
\sin 25=\frac{7.5}{x} \\
x=\frac{7.5}{\sin 25} \\
x=17.8
\end{gathered}
$$

2. Find the measure of $\angle G$.

Step 1: Use Δ EFX to find \qquad

$$
\begin{aligned}
& \sin 75=\frac{e}{6} \\
& e=6 . \sin 75 \\
& e \doteq 5.8
\end{aligned}
$$

Step 2: Use \triangle FGH to find \qquad
TBA

$$
\tan \theta=\frac{5.8}{12}
$$

$$
\tan ^{-1}\left(\frac{5.8}{12}\right)=\theta
$$

$$
\theta=26^{\circ}
$$

\qquad
3. Find the length of JL.

Step 1: Use Δ \qquad to find $L L(\theta)$

$$
\sin \theta=\frac{3}{4}
$$

$$
\sin ^{-1}\left(\frac{3}{4}\right)=\theta
$$

$$
\theta=48.6^{\circ}
$$

Step 2: Use Δ JレK to find JL

4. Find the measure of $\angle N$.

Step 1: Use \triangle OPQ to find $O P(x)$

$$
\begin{aligned}
& \tan 80^{\circ}=\frac{x}{3} \\
& x=3 \cdot \tan 80^{\circ} \\
& x \doteq 17
\end{aligned}
$$

Step 2: Use \triangle NOT

$$
\begin{aligned}
& \tan \theta=\frac{17}{5.5} \\
& \tan ^{-1}\left(\frac{17}{5.5}\right)=0 \\
& \theta=72^{\circ}
\end{aligned}
$$

A 3-dimensional problem:
Some measurements were taken by a surveyor, as shown on the diagram, to find the measurement of an inaccessible height. Find the height of the cliff.
(1) $X Y$ is perpendicular to ωX

What do you need to assume to do this question?
(2) The cliff rises with a 90 angle.

$$
\text { (I) }{\tan 69^{\circ}}^{\tan } \frac{y}{30}
$$

(2) $/ h^{\circ} \quad \tan 43^{\circ}=\frac{h}{78.2}$

$$
\begin{aligned}
& h=78.2(\tan 43) \\
& h=73 \mathrm{~m}
\end{aligned}
$$

\qquad
Day 8: Solving Two Right Triangles
Chapter 7: Trigonometry of Right Triangles
6. A 53 m high transmission tower has a supporting guy wire that makes an angle of 68° with the ground. The company that maintains the tower wishes to move the base of the guy wire 4 m farther from the base of the tower.
a. How much additional wire is needed? (2 m)
b. What angle will the wire make with the ground at its new position? (64°)

Step 2 find MN
0
53
 $\tan \theta=\frac{53}{27.4}$
$\sin 64=\frac{53}{x}$ (a) $59-57.2=2 m$ $\tan ^{-1}\left(\frac{53}{2 \pi .4}\right)=\theta$ $x=\frac{53}{\sin 64} \quad \therefore 2 \mathrm{dditional}$ approximately
$x=59 \quad \therefore 2 m$ needed
7. Kim and Yuri live in apartment buildings that are 30 m apart, as shown. The angle of depression from Kim's balcony to where Yuri's building meets the ground is 40°.
The angle of elevation from Kim's balcony to Yuri's balcony is 20°
-
0

$\tan 40^{\circ}=\frac{m}{30}$

$$
\begin{aligned}
& m=30 \cdot \tan 40^{\circ} \\
& m=25 \mathrm{~m}
\end{aligned}
$$

a. How high is Kim's balcony about the ground, to the nearest metre?

b. How high is Yuri's balcony above the ground, to the nearest metre?

$$
\begin{aligned}
& \text { find } h+k \\
& \text { find } h+k \\
& \tan 20^{\circ}=\frac{h}{30} \\
& h=30 \cdot \tan 20^{\circ} \\
& h=11 \mathrm{~m} \\
& \therefore 25+11=36 \mathrm{~m}
\end{aligned}
$$

