INVERSE OF A RELATION

INVESTIGATE:

a) Plot the points: $\mathrm{A}(-4,2) \mathrm{B}(-2,0), \mathrm{C}(0,5), \mathrm{D}(2,5), \mathrm{E}(3,7)$
b) Join the points in order, from A
to E , using straight line segments.
c) State the Domain (D) and Range
(R) of this function.

D $=\{x \in \mathbb{R} \mid-4 \leqslant x \leqslant 3\}$ $\mathbf{R}=\{y \in \mathbb{R} \mid 0 \leqslant y \leqslant 7\}$
d) Interchange the Domain and Range and re-plot the points.
$A(-4,2)$ becomes $A^{\prime}(2,-4$
$B(-2,0) \rightarrow B^{\prime}(0,-2) \quad E(3,7) \rightarrow E^{\prime}(7,3)$
$C(0,5) \rightarrow C^{\prime}(5,0)$
$D(2,5) \rightarrow D^{\prime}(5,2)$
e) Again, join the points in order from A^{\prime} to E^{\prime}.
f) State the Domain and Range of the new relation.

This is called the INVERSE relation of the original.
$\mathbf{D}=\{x \in \mathbb{R} \mid 0 \leqslant x \leqslant 7\}$
$\mathbf{R}=\{y \in \mathbb{R} \mid-4 \leqslant y \leqslant 3\}$
g) Is the new relation also a function? Why or why not?

No, because it does not poss VLT
h) Graph the line $\mathbf{y}=\mathbf{x}$
i) How does the original function and its inverse seem to be related to the line $\mathrm{y}=\mathrm{x}$?
It appears that the original function hos been reflected about the $y=x$ function.

INVERSE OF A LINEAR FUNCTION

INVESTIGATE:

a) Graph the linear function: $\mathbf{y}=\mathbf{2 x + 4}$
b) Interchange the x and y in the above equation and rearrange it to solve for \mathbf{y}.

Step 1: $x=2 y+4$

$$
\begin{aligned}
& \frac{x-4}{2} \frac{4}{2}=\frac{2 y}{2} \\
& \frac{1}{2} x-2=y \\
& \text { Rearrange } \\
& y=\frac{1}{2} x-2
\end{aligned}
$$

c) The result is the inverse equation for the original function: $\mathbf{y}=\mathbf{2 x}+\mathbf{4}$:

$$
y=\frac{1}{2} x-2
$$

d) Is the inverse also a function? If so, what type?
Yes, it's also linear.
e) Graph the inverse and state how it is related to the original function and the line $y=x$.

$$
\text { reflected about } y=x
$$

g) State the Domain and Range for both $\mathrm{y}=2 \mathrm{x}+4$ and for its inverse.
Original
Inverse
$D:\{x \in R\} \quad R=\{y \in R\} \quad D=\{x \in R\} \quad R=\{y \in R\}$
h) Find the inverse equation for the linear function: $y=-\frac{2}{3} x+6$
$x=-\frac{2}{3} y+6$
$\begin{aligned} x & =\frac{-2}{3} y+6 \\ 3(x-6) & =\frac{-2}{3} y \cdot 3 \\ \frac{3 x-18}{-2} & =\frac{-2 y}{-2}\end{aligned} \quad y=\frac{-3}{2} x+9$

11 Academic

Day 9: The Inverse Function \& Its Properties

INVESTIGATE: Inverse of a Quadratic Function
a) Graph the quadratic function: $\mathbf{y}=\mathbf{x}^{2}+\mathbf{3}$
$A(-1,4) \rightarrow A^{\prime}(4,-1)$
b) State its Domain and Range.
$D=\{x \in \mathbb{R}\}$
$R=\{y \in \mathbb{R} \mid y \geqslant 3\}$
c) Graph the inverse of this function by interchange x and y values for each point.
d) Is the inverse a function?
No, doesn't pass VLT
e) State the Domain and Range for the Inverse.
$D=\{x \in \mathbb{R} \mid x \geqslant 3\}$ $B(0,3) \rightarrow B^{\prime}(3,0)$ $C(1,4) \rightarrow C^{\prime}(4,1)$
$R=\{y \in \mathbb{R}\}$
f) Find the Inverse Equation by interchanging x and y in the original equation and isolating y.
$x=y^{2}+3$
$\sqrt{x-3}=\sqrt{y^{2}}$ $\mp \sqrt{x-3}=y$

$$
\begin{aligned}
y & =+\sqrt{x-3} \quad \text { or } \quad y=-\sqrt{x-3} \\
f^{-1}(x) & =\sqrt{x-3} \quad \text { or } f^{-1}(x)=\sqrt{x-3}
\end{aligned}
$$

If a relation is a function, the notation: $f(x)$ may be used. If a function's inverse is also a function, the notation: $f^{-1}(x)$ is used. Note that f^{-1} is not an exponent; therefore, it is not $1 / f$
g) Sometimes, the inverse of a function is not also a function. In these cases, we restrict the domain of the original function so that its reflection in the line $\mathrm{y}=\mathrm{x}$ is also a function.

For $\mathbf{y}=\mathbf{x}^{\mathbf{2}}+\mathbf{3}$ the domain would be: $\{x \in R \mid x \geq 0\}$. We are restricting the x values that are less than 0 so that the inverse function can pass the VLT test. In other words, when you graph the function, just draw the right arm of the parabola because it is where the x values are greater than or equal to 0 .

a) Restrict the right arm, then inverse the function

11 Academic

Practice

1. Find the inverse for each relation.
a) $\{(1,-3),(-2,3),(5,1),(6,4)\}$
b) $\{(-5,7),(-6,-8),(1,-2),(10,3)\}$
inverse $\{(-3,1),(3,-2),(1,5),(4,6)\}$
inverse $\{(7,-5),(-8,-6),(-2,1),(3,10)\}$
2) Find an equation for the inverse for each of the following relations.
a) $y=3 x+2$
b) $y=-5 x-7$
c) $y=\frac{3}{4} x+5$
$x=3 y+2$
$x=-5 y-7$
$\frac{x}{-5}+\frac{7}{-5}=\frac{-5 y}{-5}$
$\begin{aligned} \frac{x}{3}-\frac{2}{3} & =\frac{3 y}{3} \\ y & =\frac{1}{3} x-\frac{2}{3} \Rightarrow f^{-1}(x)=\frac{1}{3} x-\frac{2}{3}\end{aligned}$
$y=\frac{-1}{5} x-\frac{7}{5}$ $4 \cdot(x-5)=\frac{3}{4} y \cdot 4$
$\frac{4 x}{3}-\frac{20}{3}=\frac{3 y}{3}$$\quad\left[\begin{array}{l}y=\frac{4}{3} x-\frac{20}{3} \\ f^{\prime}(x)=\frac{4}{3} x-\frac{20}{3}\end{array}\right.$
$\begin{aligned} \frac{x}{3}-\frac{2}{3} & =\frac{3 y}{3} \\ y & =\frac{1}{3} x-\frac{2}{3} \Rightarrow f^{-1}(x)=\frac{1}{3} x-\frac{2}{3}\end{aligned}$
$f^{-1}(x)=\frac{-1}{5} x-\frac{7}{5}$
$x=\frac{3}{4} y+5$
e) $y=x^{2}-4 \quad \mathrm{D}=\{\mathrm{x} \in R \mid x \geq 0\}$
f) $y=\sqrt{x-2}, y \geq 0$
d) $y=x^{2}-4 \quad \mathrm{D}=\{\mathrm{x} \in R \mid x \leq 0\}$

$x=y^{2}-4$
$\sqrt{x+4}=\sqrt{y^{2}}$

$$
\begin{aligned}
& \text { invert } \rightarrow \overbrace{2}^{2} y=x^{2}-4 \\
& (x)^{2}=(\sqrt{y-2})^{2} \\
& x^{2}=y-2
\end{aligned}
$$

$$
x^{2}=y-2
$$

$\mp \sqrt{x+4}=y$
d) $y=x^{2}-4 \quad \mathrm{D}=\{\mathrm{x} \in R \mid x \leq 0\}$

Doming of Origins Function

$$
\begin{aligned}
& y=+\sqrt{x+4} \\
& f^{=1}\binom{x^{2}}{x}=\sqrt[4]{x^{\prime}+\bar{y}}\{x \in R \mid x \geq 0\}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+2=y \\
& f^{-1}(x)=x^{2}+2 \quad x \geqslant 0
\end{aligned}
$$

