\qquad

1. Sydney Harbour Bridge in Australia is usually wide for a long-span bridge. It carries two rail lines, eight road lanes, a cycle lane, and a walkway.
a. Factor the expression $10 x^{2}-7 x-3$ to find the length and the width of the bridge.

$$
\begin{aligned}
& 10 x^{2}-7 x-3 \\
& 10 x^{2}+3 x-10 x-3 \\
& x(10 x+3)-(10 x+3) \\
& (10 x+3)(x-1) \\
& \text { length }
\end{aligned}
$$

M	A	M
-30	-7	$3,-10$

b. If x represents 50 m , what are the length and the width of the bridge, in metres?

$$
\begin{aligned}
\text { length } & =10 x+3 \\
& =10(50)+3 \\
& =503 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { width } & =x-1 \\
& =50-1 \\
& =49 \mathrm{~m}
\end{aligned}
$$

2. The height of a ball thrown from the top of a building can be approximated by the formula $h=-5 t^{2}+15 t+20$, where t is the time, in seconds, and h is the height, in metres.
a. Write the formula in factored form. Hint: Remove the GCF first

$$
\begin{aligned}
& =-5\left(t^{2}-3 t-4\right) \\
& =-5(t+1)(t-4)
\end{aligned}
$$

3. Determine a simplified factored expression for the area of shaded region.
a.

$$
\begin{aligned}
& \text { veer, Big Circle }=\pi r_{1}^{2}=\pi(3 x+2)^{2} \\
& \text { Areal Circle }^{2}-\pi_{r_{2}}{ }^{2}=\pi(x+1)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\pi(3 x+2-x-1)(3 x+2+x+1) \\
& =\pi\left[(3 x+2)^{2}-(x+1)^{2}\right] \\
& =\pi(2 x+1)(4 x+3)
\end{aligned}
$$

\qquad
b.

$$
\begin{aligned}
\text { Ace of Big Squere } & =(4 x+5)^{2} \\
\text { Aree of smell } \square & =(x-2)^{2} \\
-(4 x+5) \text { Shoded Are e } & =(4 x+5)^{2}-(x-2)^{2} \\
& =(4 x+5-x+2)(4 x+5+x-2) \\
& =(3 x+7)(5 x+3)
\end{aligned}
$$

c.

d.

$$
\begin{aligned}
\begin{array}{c}
\text { Shaded } \\
\text { Area }
\end{array} & =\begin{array}{c}
\text { Ace of } \\
\text { bis } \square
\end{array}-\begin{array}{c}
\text { Ane of } \\
\text { smell } \\
\square
\end{array} \\
& =\overrightarrow{k(2 k+6)}-k(3) \\
& =2 k^{2}+6 k-3 k \\
& =2 k^{2}+3 k \\
& =k(2 k+3)
\end{aligned}
$$

\qquad
4. The volume of a rectangular prism is represented by the polynomial $2 x^{3}-24 x^{2}+72 x$.
a. Factor the polynomial completely to determine the dimensions of the prism. Remember that $V=l w h$

$$
\begin{aligned}
& 2 x\left(x^{2}-12 x+36\right) \\
= & 2 x(x-6)(x-6)
\end{aligned}
$$

M	A	N
36	-12	$-6-6$

b. If x represents 8 cm , what are the possible dimensions of the prism?

$$
\begin{array}{llrlrl}
\text { Length } & =x-6 \\
& =8-6 & \text { width } & =x-6 & \text { height } & =2 x \\
& =2 \mathrm{~cm} & & =8-6 & & =2(8) \\
& & =2 \mathrm{~cm} & & & =16 \mathrm{~cm}
\end{array}
$$

c. Could \times represent 5 cm ? Explain.

No, b / c a dimension comot be a negotire value.
5. Write a polynomial with three terms that when factored has a GCF of $3 x^{4} y^{2} z$.

$$
9 x^{4} y^{2} z^{2}+3 x^{5} y^{3} z+36 x y z
$$

Answers will vary
6. Determine a possible value of k such that $x^{2}+k x-10$ can be factored as a simple trinomial.
(1)

$$
\begin{aligned}
& k=1-10 \\
& k=-9
\end{aligned}
$$

(2)

$$
\begin{aligned}
& k=-1+10 \\
& k=9
\end{aligned}
$$

(3) $k=2-5$ $k=-3$
(4)

$$
k=-2+5
$$

