\qquad
Changing Conditions on Investments \& Loans Practice

1. Describe the difference between the graphs of $y=400(1.05)^{n}$ and $y=400(1.07)^{n}$ (without graphing).
$y=400(1.07)^{n}$ would grow faster because the growth rate is greeter.
2. For a $\$ 1500$ investment, at 7% per year, compounded semi-annually, compare the final amounts and total interest after each of the following terms.
a) Three years

T: comp. semi-annualls
A:?
P: 1500

$$
A=P(1+i)^{n}
$$

$$
\begin{aligned}
& A=P(1+i) \\
& =1500(1+0.07 \div 2)^{6}
\end{aligned}
$$

$\therefore 0.07$ year $\div 2=1843.18$
n : 3 years $\times 2$

$$
J=A-P=\$ 343.88
$$

b) Four years

T: com. semi-annual
A: ?
P: 1500

$$
\begin{aligned}
& i: 0.07 \div 2=0.035 \\
& n: 4 \text { years } \times 2=8 \\
& A=P(1+i)^{n}=1500(1+0.035)^{8} \\
& =\$ 1975.21 \\
& I=1975.21-1500=475.21
\end{aligned}
$$

c) Five years
T : com. semi-an
A:? $\quad \therefore$ The longer P: 1500 the more

$$
i: 0.07 \div 2=0.035
$$

$$
n: 5 \times 2=10
$$

$$
A=1500(1+0.035)^{10}
$$

$$
=\$ 2115.90
$$

$$
I=2115.90-1500=\$ 615.90
$$

3. Bruno borrows $\$ 1000$ from a high interest lender (loan shark) at 105% per year, compounded daily. How much interest will Bruno pay if he takes
a) 1 month to pay off the loan
T : daily
A : ?
P. 1000
$i: 1.05$ year $\div 365$
$n: 1$ month $=30$ days
b) 2 months to pay off the loan

$$
\begin{aligned}
A & =1000(1+1.05 \div 365)^{30} \\
& =61009
\end{aligned}
$$

$=\$ 1089.99 \quad \therefore$ Bruno pays $\$ 89.99$

$$
\begin{aligned}
A & =1000(1+1.05 \div 365)^{61} \\
& =\$ 1191.92 \\
I & =1191.52-1000 \\
& =\$ 191.52
\end{aligned}
$$

\therefore He pays $\$ 191.52$ internat

$$
I=\$ 89.97 \quad \text { interest }
$$

4. A $\$ 675$ investment earns interest at 3.4% per year, compounded semi-annually, for five years. How will the investment amount be affected if you double
a) the interest rate
b) the total term of the invest
Comp. Semi-annuplly

Type: Co
A:?

$$
\begin{array}{ll}
P: 675 & P: 675 \\
i: 0.034 \text { yea- } \div 2=0.017 \\
n: 5 \text { years } \times 2=10 & n: 10 \\
A=675(1+0.017)^{10} & A=67(1+0.034)^{10} \\
=0.0 .034 \\
=142.999
\end{array}
$$

15)

$$
P: 675
$$

$$
1: 0.017
$$

$$
n: 20
$$

$$
A=675(1+0.017)^{20}
$$

$$
=\$ 945.63
$$

\qquad
5. Sou Yum hopes to have $\$ 3000$ in two years to buy a home theatre system. Determine the amount she would need to invest (ie., present value) to reach her goal at
a) 4% per year, compounded semi-annually
b) 5% per year, compounded semi-annually

$$
P=A(1+i)^{-n}
$$

$$
=\frac{3000(1+0.02)^{-4}}{10200}
$$

i : $0.04 \div 2=0.02$

$$
=\$ 2771.54
$$

\therefore She needs to invest $\$ 2771.54$

$$
\begin{array}{ll}
7: \text { sem: } & P=A(1+i)^{-n} \\
A: 3000 & \\
P: ? & =3000(1+0.025)^{-4} \\
1: 0.05 \div 2=0.025 & =2717.85
\end{array}
$$

n: $2 y \operatorname{tas} \times 2=4$
\therefore She need to invest $\$ 2717.85$
6. Jamie wants to invest $\$ 14000$ for 6 years. Calculate the future value of her investment for
a) 5.8% per year, simple interest
I:
P : 14000
$r: 0.058$
t : 6 years
$I=\operatorname{Prt}$
$=14000(0.058) 6$ $=\$ 4872$
b) 5.5% per year, compounded semi-annually
T : semi
A :?
P , 14,000
i, $0.055 \div 2=0.0275$
n : 6 years $\times 2=12$
$A=14000(1+0.0275)^{12}$
$=\$ 19386.97$
c) 5.0% per year, compounded monthly
T: monthly
4: ?
D: 14000
$i: 0.05 \div 12$
n : 6 yeas $\times 12=72$
$A=14000(1+0.05 \div 12)^{72}$
$=\$ 18,886.25$

$$
A=14000+4872
$$

$$
=\$ 18872
$$

7. Your friend Steve does not understand the difference between some possible investment options, each with a different compounding period. To help him, calculate the future value of a $\$ 10000$ investment over 10 years at 8% per year for each compounding period.
a) Annually
b) Semi-annually
c) Quarterly
d) Monthly
e) Bi-weekly
f) Weekly

$T:$ annual	$T:$ semi
$A: ?$	$A: ?$
$P: 10,000$	$P: 10000$
$i: 0.08$	$1: 0.08 \div 2$
$n: 10$ years	$n: 10 \times 2$
$A=10000(1+0.08)^{10}$	$A=10000(1+0.08 \div 2)^{20}$
$=\$ 21589.25$	$=\$ 21911.23$

T: Quarterly
A: ?
P: 10000

$$
\begin{aligned}
& i: 0.08 \div 4 \\
& n: 10 \times 4 \\
& A=10,000(1+0.08 \div 4)^{40} \\
& =\$ 22080.40
\end{aligned}
$$

