\qquad

1. Solve $x^{2}-11 x+18=0$ using the method of factoring.

$$
\begin{array}{rl}
(x-2)(x-9)=0 \\
x-2=0 & x-9 \\
x=2 & x=9
\end{array} \quad \begin{aligned}
& x=2 \\
& x=9
\end{aligned}
$$

2. Solve $5 x^{2}-30 x+20=0$ using the quadratic formula. Leave your answers in exact radical form.
3. a) Write the function $f(x)=2 x^{2}-12 x+12$ in vertex form.

$$
\begin{aligned}
& =2\left(x^{2}-6 x\right)+12 \quad \frac{-6}{2}=-3 \quad(-3)^{2}=9 \\
& =2\left(x^{2}-6 x+9-9\right)+12 \\
& =2\left(x^{2}-6 x+9\right)-18+12 \\
& =2(x-3)^{2}-6
\end{aligned}
$$

b) Starting with the vertex form from part (a) above determine the x-intercepts of the function using the method of isolating the variable. Approximate answers to two decimal places of accuracy.

$$
\begin{aligned}
0 & =2(x-3)^{2}-6 \\
3 \frac{6}{x} & =\frac{2(x-3)^{2}}{x} \\
\sqrt{3} & =(x-3)^{2} \\
\mp \sqrt{3} & =(x-3)
\end{aligned}
$$

$$
x-3=\sqrt{3} \text { and }
$$

$$
x-3=\sqrt{3}
$$

$$
x=\sqrt{3}+3 \quad x=-\sqrt{3}+3
$$

4. Determine the value of the discriminant and state the number of x-intercepts for each parabola.
a) $f(x)=2 x^{2}-8 x+19$
b) $f(x)=-x^{2}+6 x-9$

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-8)^{2}-4(2)(19) \\
& =64-152 \\
& =-88 \text { No Xint }
\end{aligned}
$$

$$
\begin{aligned}
D & =(6)^{2}-4(-1)(-9) \\
& =36-36 \\
& =0
\end{aligned}
$$

$f x_{-1 n}^{1} t$
5. Determine the equation, in factored form, of the quadratic function with x-intercepts
$x=-7$ and $x=4$ passing through the point $(3,-20)$.

$$
\begin{aligned}
y & =a(x-r)(x-s) \quad r=-3 \quad s=4 \quad x=3 \quad y=-20 \\
-20 & =9(3-(-7))(3-4) \quad y=2(x+7)(x-4) \\
-20 & =9(10)(-1) \\
-20 & =-10 \\
9 & =2
\end{aligned}
$$

$$
\begin{aligned}
& x_{1,2}=\frac{-b \mp \sqrt{b^{2}-42}}{22}=\frac{30 \mp \sqrt{907-4(5)(20)}}{10}=\frac{30 \mp \sqrt{900-400}}{10}=\frac{30 \mp \sqrt{500}}{10} \\
& =\frac{30 \mp 10 \sqrt{5}}{10}=\frac{2 Q(3 \mp \sqrt{5})}{12} \\
& x_{1}=3+\sqrt{5} \\
& x_{2}=3-\sqrt{5}
\end{aligned}
$$

\qquad
6. Find the point(s) of intersection (if any) of $f(x)=5 x-2$ and $g(x)=-5 x^{2}-9 x+1$ using an algebraic method. Show all steps.

$$
\begin{aligned}
5 x-2 & =-5 x^{2}-9 x+1 \\
5 x^{2}+14 x-3 & =0 \\
\frac{(5 x-1)(5 x+14)}{5} & =0 \quad \frac{m|A| N}{-15}|14|-1,+15 \\
\frac{(5 x-1)(5)(x+3)}{5} & =0
\end{aligned} \quad\left[\begin{array} { l }
{ (5 x - 1) (x + 3) = 0 } \\
{ x = \frac { 1 } { 5 } \quad x = - 3 }
\end{array} \quad \left[\begin{array}{l}
x
\end{array}\right.\right.
$$

7. The profit function for a product is given by $P(x)=-4 x^{2}+28 x-40$, where x is the number of products sold. Both the number of products and the profit are in thousands.
a) Determine how many items must be sold for the company to breakeven.

$$
\begin{aligned}
& 0=-4 x^{2}+28 x-40 \\
& 0=-4\left(x^{2}-7 x+10\right) \\
& 0=x^{2}-7 x+10 \\
& 0=(x-2)(x-5) \\
& x=2 \quad x=5
\end{aligned}
$$

\therefore The company needs to sell 2000 or soot units to break ever.
b) Determine how many items must be sold for the company to make a profit of eight thousand dollars.

$$
\left.\begin{array}{r}
8=-4 x^{2}+28 x-40 \\
4 x^{2}-28 x+48=0 \\
4\left(x^{2}-7 x+12\right)=0 \\
x^{2}-7 x+12=0 \\
(x-3)(x-4)=0
\end{array}\right\} \begin{aligned}
& x_{1}=3 \\
& x_{2}=4
\end{aligned}
$$

$$
\left.\begin{array}{l}
4 x^{2}-28 x+48=0 \\
4\left(x^{2}-7 x+12\right)=0
\end{array}\right\} \quad \begin{array}{ll}
\quad \begin{array}{l}
\text { The company needs to sell } 3000 \text { or } \\
\\
4000 \text { units to make } \$ 8000
\end{array}
\end{array}
$$ 4000 units to make $\$ 8000$ in profit.

8. A company's profit, in thousands of dollars, on sales of video games is modeled by the function $P(n)=-2(n-2.5)^{2}+48$, where n is the number of video games sold, in thousands.
Additionally, the company's profit, in thousands, on sales of movie videos is modeled by the function $P(n)=-(n-1)(n-11)$, where n is the number of movie videos sold, in thousands.
Calculate the maximum profit that the company can earn from both: video games and movie videos combined. Show all work.

$$
\begin{aligned}
P(n) & =-2(n-2.5)^{2}+48-(n-1)(n-11) \\
& =-2\left(n^{2}-5 n+6.25\right)+48-\left(n^{2}-12 n+11\right) \\
& =-2 n^{2}+10 n-12.5+48-n^{2}+12 n-11 \quad \text { M N P N f fit } \\
& =-3 n^{2}+22 n+24.5 \\
& =-3\left(n^{2}-\frac{22}{3} n\right)+24.5 \quad 464,830 \\
& =-3\left(n^{2}-\frac{22}{3} n+\frac{121}{9}-\frac{121}{9}\right)+24.5=\frac{11}{3} \quad\left(\frac{11}{3}\right)^{2}=\frac{121}{9} \\
& =-3\left(n-\frac{11}{3}\right)^{2}+\frac{121}{3}+24.5
\end{aligned}
$$

\qquad
9. A bike rental agency has 150 bikes. The owner determines that at a price of $\$ 48$ per week, he can rent all the bikes. For each $\$ 2$ increase in price, 4 fewer bikes get rented.
a) Determine what rental charge will maximize the revenue.
b) Each of the rented bikes need to be serviced in maintenance. Suppose it costs the owner $\$ 5$ per week per bike for maintenance. Determine the maximum profit?

$$
\begin{aligned}
& \text { a) } R(x)=(150-4 x)(48+2 x) \\
& =7200+300 x-192 x-8 x^{2} \\
& R(x)=-8 x^{2}+108 x+7200 \\
& =-8\left(x^{2}-13.5 x\right)+7200 \quad \frac{-13.5}{2}=6.75 \quad(6.75)^{2}=45.57 \quad 1 \\
& =-8\left(x^{2}-13.5 x+45.57-45.57\right)+7200 \\
& =-8\left(x^{2}-13.5 x+45.57\right)+364.50+7200 \\
& =-8(x-6.75)^{2}+7564.50 \\
& P=48+(6.75) 2=\$ 61.50 \\
& \text { b) } P(x)=R(x)-C(x) \\
& =-8 x^{2}+108 x+7203-5(150-4 x \\
& =-8 x^{2}+108 x+7200-750+20 x \\
& P(x)=-8 x^{2}+128 x+6450 \\
& =-8\left(x^{2}-10 x\right)+6450 \\
& =-8\left(x^{2}-16 x+64-64\right)+6450 \\
& \text { - OR- } \\
& \begin{array}{rrr}
150-4 x=0 & 48+2 x=0 \\
x=37.5 & x=-24
\end{array} \\
& \begin{aligned}
& \text { axis } \\
& \text { of }^{\prime}=\frac{37.5-24}{2}=6.75 \\
& \partial==48+2(6.75) \\
&=\$ 61.50
\end{aligned}
\end{aligned}
$$

10. Determine the equation, in standard form, of the quadratic function passing through the point $(5,-1)$ with zeros $4+\sqrt{7}$ and $4-\sqrt{7}$.

$$
\begin{aligned}
y & =a(x-r)(x-s) \quad r=4+\sqrt{7} \quad s \\
-1 & =a(5-4-\sqrt{7})(5-4+\sqrt{7}) \\
-1 & =a(1-\sqrt{7})(1+\sqrt{7}) \\
-1 & =a(1-7) \\
-1 & =-69 \\
a & =\frac{1}{6}
\end{aligned} \quad \begin{aligned}
y & =\frac{1}{6}(x-4-\sqrt{7})(x+4-\sqrt{7}) \\
y & =\frac{1}{6}\left(x^{2}+4 x-\sqrt{7} x-4 x+4 \sqrt{7}-\sqrt{7} x-4 \sqrt{7}+7\right) \\
y & =\frac{1}{6}\left(x^{2}-\sqrt{7} x+7\right)
\end{aligned}
$$

11. Do the following questions from the textbook:

Pg. 202: \#1-10, 12, 14-18, 21-23
Pg. 204: \#1, 2, 6-9
Optional:
pg. 207: \#12 [Hint: \# of seats $=22-x$, Cost $=225+30(22-x)]$
pg. 209: \#35 [Hint: \# of students $=25-2 x$, Cost $=5500+240(25-2 x)]$

