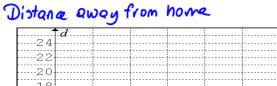
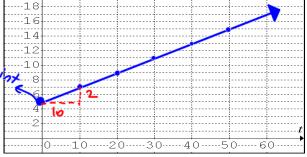


Task 1: Let's Review Linear Relationships


Billy Bob's dog is out for a walk. The equation to model its distance away from the house, d metres, after t seconds is: d = 0.2t + 5.


- Enter this equation into in DESMOS.
- Adjust your screen to show the scales like they are shown in the grid below.

- 1. Complete the Distance column in the table below. To calculate the distances, you can:
 - > You can use the equation above and your calculator.
 - > You can use the TRACE feature on the online graphing calculator.

Time	Distance	Fíníte Dífferences	
(sec)	(m)	First Differences	
0	5	7-5=2	
10	70	9-7=2	в
20	9	1-7=2	
30	15	13-11 = 2	
40	13	15-13=2	
50	15)	17-13=2	

2. Graph the relation on the grid.

a. How far from the house is the dog when he starts his walk? This is the <u>y-intercept</u>. <u>5</u> m
Please label this point on the graph.

- b. At what rate does the dog walk? This is the <u>slope</u>. $\frac{2}{10sec} = \frac{10}{5sec}$ Please indicate this on the graph with a rate triangle.
- 4. Calculate the <u>first differences</u>? Do you remember how?
- 5. The first differences are all equal. What does that tell you about the relationship between d and t? LINEAR RELATIONSHIP

symmetry (

Task 2: Quadratic Relations Now, let's kick it up a notch!!!

Billy Bob's dog is now going to run, fetch a frisbee, and then run back. The equation to model the distance, d metres, the dog is away from Billy Bob after t seconds is: $d = -0.025t^2 + 1.5t$.

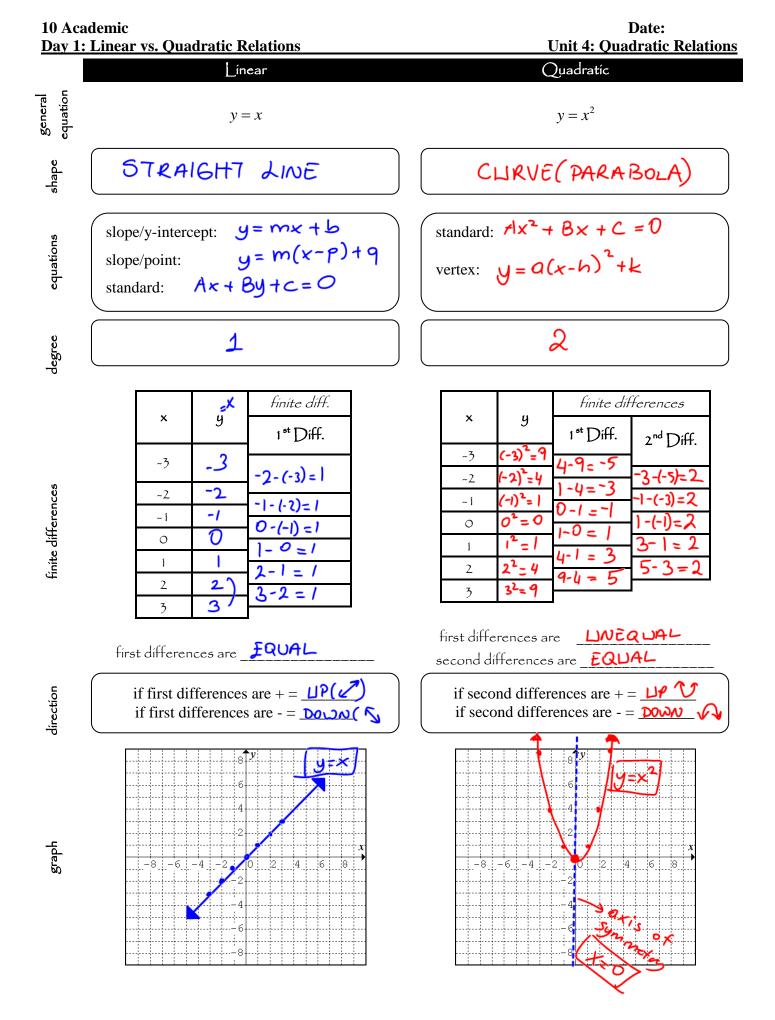
- Enter this equation in the online graphing calculator.
- 6. Complete the Height column in the table below. To calculate the height, you can:
 - > You can use the equation above and your calculator.
 - You can use the TRACE feature on the online graphing calculator. The distance the dog is gwoy from B.B

Time	Height	Finite Di	<i>ífferences</i>	24			Vertex
(s)	(m)	First	Second	20	/		
0	0	Differences	Differences	18	/		
10	12.5		7.5-12.5=5	14	/		
20	20 4	20-12.5=7.5	2.7-7.5=-5	10			
30	22.5	22.5 - 20 = 2.5	-2.5-2.5 =5	6			
40	707	20 - 21.5 = -2.5	-7.5-(-2.5)=-5	2			
50	12.50	0 105 -105	-12.5-(-7.5)=-5	7.0	1020	30	406
60	0/	0-12.5=12.5					

7. Graph the relation on the grid. \checkmark

- 8. a. How far is the dog from Billy Bob when he starts running? This is the **<u>y-intercept</u>**. _____
 - b. What is the maximum distance between the dog and Billy Bob? This is the vertex. _______
 - c. This shape is called a **parabola**. Draw a vertical line through the vertex of the parabola. This is the **axis of symmetry**.
 - d. Would you say that this parabola '**opens up**' or '**opens down**'? **DOWN**
 - e. When is the dog Om away from Billy Bob? These are the zeros! (aka: x-intercepts). @ Oscc ond 60><c

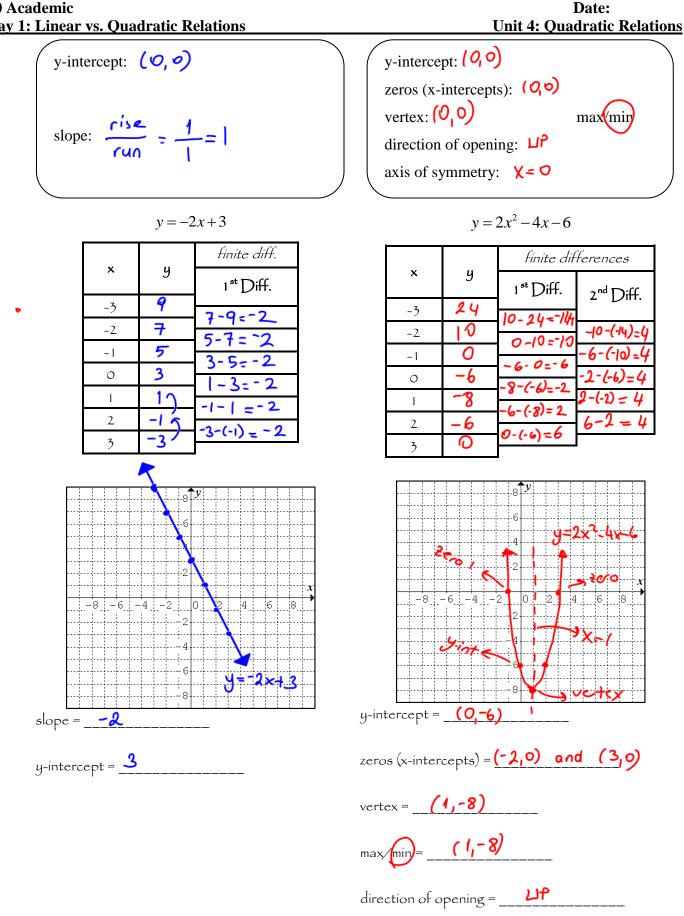
d. zeros


(0,0) and (60,0)

- 9. On the graph, label and calculate the following:
 - a. y-intercept b. vertex (0,0) (3022.5)
- 10. Calculate the first differences.
- 11. The first differences are not equal. What does that tell you about the relationship between d and t? It's non linear.
- 12. Calculate the second differences. You do this by calculating the first differences of the first differences.
- 13. The second differences are equal. This means that the relationship is *Quadratic*

c. axis of symmetry

X=30


14. How does the equation of a Linear Relation compare to the equation of a Quadratic Relation? Linear : the exponent of "+" is 1 Quad · the exponent of + is 2 Page 2 of 5

example

axis of symmetry = x = 1

10 Academic Day 1: Linear	vs. Quadratic Relations		Date: Unit 4: Quadratic Relations	
<u> </u>	A	9.0.5 KI B	С	
			-® -6 -4 -2 ≥ 0 ≥ 4 6 8 -8 -6 -4 -2 ≥ 0 ≥ 4 6 8 -8 -6 -4 -2 ≥ 0 ≥ 4 6 8	
state & label the vertex	(1,5) 5m	(-3,0)	(9-1)	
state & label the y-intercept	(0,3)	(0,9)	(0, -1)	
state & label the zeros	арр. (-0,7,9) (2,7,0)	(-3,0)	NONE	
state the equation & draw in the axis of symmetry	(X=1)	X=-3	X=O	
does the parabola open up or down?	Down	LIP	Down	
is the vertex a max or a min?	Max	Min	мах	
	first differences are unequal	fírst dífferences are unequal	first differences are unequal	
finite differences	second differences are equal and <u>negative</u> (positive or negative?)	second differences are equal and Positive (positive or negative?)	second differences are equal and <u>NEGATIVE</u> (positive or negative?)	