■四明
 Linear To Qu
 山可无

Open：DESMOS Graphing Calculator

Task 1：Let＇s Review Linear Relationships

Billy Bob＇s dog is out for a walk．The equation to model its distance away from the house，d metres，after t seconds is：$d=0.2 t+5$ ．
－Enter this equation into in DESMOS．
－Adjust your screen to show the scales like they are shown in the grid below．

1．Complete the Distance column in the table below．To calculate the distances，you can：

＞You can use the equation above and your calculator．
＞You can use the TRACE feature on the online graphing calculator．

Distance away from home

2．Graph the relation on the grid．
3．a．How far from the house is the dog when he starts his walk？This is the y－intercept． 5 m Please label this point on the graph．
b．At what rate does the dog wall？This is the slope． $2 \mathrm{~m} / 10 \mathrm{sec}=1 \mathrm{~m} / 5 \mathrm{sec}$ Please indicate this on the graph with a rate triangle．

4．Calculate the first differences？Do you remember how？

5．The first differences are all equal．What does that tell you about the relationship between d and t ？ Linear relationship

Task 2: Quadratic Relations Now, let's kick it up a notch!!!
Billy Bob's dog is now going to run, fetch a frisbee, and then run back. The equation to model
 the distance, d metres, the dog is away from Billy Bob after t seconds is: $d=-0.025 t^{2}+1.5 t$. \quad.

- Enter this equation in the online graphing calculator.

6. Complete the Height column in the table below. To calculate the height, you can:
> You can use the equation above and your calculator.
> You can use the TRACE feature on the online graphing calculator.
The distance the dog is awoy from $B . B$

7. Graph the relation on the grid. \downarrow

8. a. How far is the dog from Billy Bob when he starts running? This is the y-intercept. \qquad
b. What is the maximum distance between the dog and Billy Bob? This is the vertex. _22.5m
c. This shape is called a parabola. Draw a vertical line through the vertex of the parabola. This is the axis of symmetry.
d. Would you say that this parabola 'opens up' or 'opens down'? DOWN
e. When is the dog om away from Billy Bob? These are the zeros! (aka: x-intercepts). Otc and 60 sec
9. On the graph, label and calculate the following:
a. y-intercept
$(0,0)$
b. vertex
(30,22.5)
c. axis of symmetry
d. zeros
alculate the first differences.
10. Calculate the first differences.
11. The first differences are not equal. What does that tell you about the relationship between d and t ? It's non linear.
12. Calculate the second differences. You do this by calculating the first differences of the first differences.
13. The second differences are equal. This means that the relationship is quadratic
14. How does the equation of a Linear Relation compare to the equation of a Quadratic Relation?

Linear: the exponent of " 7 " is 1
Quad the exponent of t is 2

$$
y=x^{2}
$$

x	y^{x}	finite diff.
		$1^{\text {st }}$ Diff.
-3	-3	$-2-(-3)=1$
-2	-2	$-1-(-2)=1$
-1	-1	$0-(-1)=1$
0	0	$1-0=1$
1	1	$2-1=1$
2	2	$3-2=1$
3	3	

first differences are \qquad equal

slope/y-intercept: $\quad y=m x+b$ slope/point: $\quad y=m(x-p)+q$
standard: $\quad A x+B y+C=0$
1
standard: $A x^{2}+B x+C=0$
vertex: $\quad y=a(x-h)^{2}+k$
2

x	y	finite differences	
		$1^{\text {st }}$ Diff.	$2^{\text {nd }}$ Diff.
	$(-3)^{2}=9$	$4-9=-5$	
-2	$(-2)^{2}=4$	$4-(-5)=2$	
-1	$(-1)^{2}=1$	$1-4=-3$	$-1-(-3)=2$
0	$0^{2}=0$	$-1=-1$	$1-(-1)=2$
1	$1^{2}=1$	$1-0=1$	$3-1=2$
2	$2^{2}=4$	$4-1=3$	$5-3=2$
3	$3^{2}=9$	$9-4=5$	

first differences are \qquad LNĒQUAL second differences are EQLAL
if second differences are $+=$ LP Q
if second differences are $-=$ DOWN \curvearrowleft

y-intercept: $(0,0)$
zeros (x -intercepts): $(0,0)$
vertex: $(0,0) \quad \max (m i n)$
direction of opening: ΔP
axis of symmetry: $X=0$

$$
y=2 x^{2}-4 x-6
$$

\times	y	finite differences	
		${ }^{\text {st }}$ Diff.	$2^{\text {nd }}$ Diff.
-3	24	10-24z-144	
-2	10	$\frac{10-24=}{0-10=-11}$	$-10-(-44)=4$
-1	0	-6-0--6	$-6-(-10)=4$
\bigcirc	-6	-6-0 $8-6$	$-2-(-6)=4$
1	-8	- $6-(-8)=-2$	$2-(-2)=4$
2	-6		$6-2=4$
3	O	(-6)	

y-intercept $=(0,-6) \quad 1$
zeros $(x$-intercepts $)=(-2,0)$ and $(3,0)$

$$
\begin{aligned}
& \text { vertex }=(1,-8) \\
& \max \min =(1,-8)
\end{aligned}
$$

$$
\text { direction of opening }=\ldots \pm
$$

$$
\text { axis of symmetry }=\quad x=1
$$

