## Trigonometry Review

Communication in all questions must include:

- Enough steps shown to clearly demonstrate thinking
- Solutions that are neat and easy to follow
- Proper use of mathematical symbols
- Equal signs aligned
- Units used as required
- Concluding statements for all word problems
- Fractions reduced to lowest terms
- Correct rounding.

1. How do you know when to use SOH CAH TOA? How do you know when to use the Sine Law? How do you know when to use the Cosine Law? Describe in words and given an example.

2. For each triangle below, find the missing side ( x ) or the missing angle ( $\vartheta$ ) in each diagram. (Include units, round to 1 dp )

3. What does it mean to "solve a triangle"?

To numerically figure out each angle and sides.
4. Solve the triangle. Summarize your answers in the chart. (Round to 1 dp )


$$
\cos A=\frac{b^{2}+c^{2}-0_{1}^{2}}{2 \cdot b \cdot c}
$$

$$
\cos A=\frac{10^{2}+8^{2}-14^{2}}{2 \cdot 10 \cdot 8}
$$

$$
\begin{array}{ll}
\angle \mathrm{A}=101.5^{\circ} & \mathrm{a}=14 \mathrm{~m} \\
\angle \mathrm{~B}=44.6^{\circ} & \mathrm{b}=10 \mathrm{~m} \\
\angle \mathrm{C}=34^{\circ} & \mathrm{c}=8 \mathrm{~m}
\end{array}
$$

$$
\cos A=\frac{-32}{160}
$$

$$
\cos (-32 / 160)=4
$$

$$
A \cong 101,5^{\circ}
$$


5. Angle A is between $0^{\circ}$ and $180^{\circ}$. Determine all measures of angle A in each of the following cases:

a) $\sin \mathrm{A}=0.2079$
sin ratio is positive in $Q 1 \& Q_{2}$
thus, therein 2 passible angles.

$$
\begin{aligned}
\sin ^{-1} 0.2079=A_{1} \\
\underline{A_{1} \cong 12^{\circ}}
\end{aligned}, Q 1
$$

check $\sin 168=0.2079 \mathrm{~V}$ $\sin 12=0.2079$
b) $\cos \mathrm{A}=-0.8191$ os ratio is - 're in Q2 thus, there's only one angle

$$
\begin{array}{r}
\cos ^{-1}(-0.8191)=A \\
A \cong 145^{\circ}
\end{array}
$$

c) $\tan \mathrm{A}=1.428$
than ratio is positive in Q1, only one argyle

c) $\tan \mathrm{A}=-2.145$
tan is negative in QL

$$
\tan ^{-1}(-2.145)=A
$$



$$
\frac{A=180-65}{\left(A=115^{\circ}\right)^{\text {check }}} \tan (\pi=-2.14)
$$



$$
\begin{aligned}
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 \cdot b \cdot c} \\
\cos \theta & =\frac{\bar{i}^{2}+2^{2}+4.6^{2}=2.8^{2}}{2 \times 6.7} \\
\cos \theta & =0.9074 \\
\cos ^{-1}(0.9074) & =\theta \\
\theta & \approx 25^{\circ}
\end{aligned}
$$

$\therefore$ The angle for the final turn is $25^{\circ}$

1. A ladder 10 feet long is leaning against a wall at a $71^{\circ}$ angle. How far from the wall, is the foot of the ladder? How high up the wall does the ladder reach?

$\rightarrow$ let $x$ represent the distance from the wall

$$
\sin \theta=\frac{O}{H}
$$

$$
\sin 71^{\circ}=\frac{x}{10}
$$

$\therefore$ The ladder is 3.3 ft from

$$
\begin{aligned}
x & =10 \sin 71^{\circ} \\
& =2
\end{aligned}
$$

the wall

Let $y$ represent the height of the ladder

$$
\begin{array}{ll}
\cos \theta=\frac{A}{H} & \therefore \text {. The ladder } \\
\cos 71^{\circ}=\frac{y}{10} & \text { is } 9.5 \mathrm{ft} \\
y=10 \cos 71^{\circ} & \text { high. } \\
=9.5 \mathrm{ft} &
\end{array}
$$

2. Billy was making a blueprint of his home, which is triangular. One side of the triangular blueprint is 1.3 meters long. The angles in the triangle at each end of the 1.3 m side are $44^{\circ}$ and $101^{\circ}$. Determine the lengths of the other two sides of the blueprint.


$$
\begin{aligned}
\text { Third angle } & =180^{6}-44^{\circ}-101^{\circ} \\
& =35^{\circ}
\end{aligned}
$$

Now we can use the sine law!

$$
\begin{array}{rl|l}
\frac{x}{\sin 101^{\circ}} & =\frac{1.3}{\sin 35^{\circ}} \\
x \sin 35^{\circ} & =1.3 \sin 101^{\circ} \\
x & =\frac{1.3 \sin 101^{\circ}}{\sin 35^{\circ}} & \begin{aligned}
\sin 44^{\circ} & =\frac{1.3}{\sin 35^{\circ}} \\
& \text { y } 35^{\circ} \\
= & y \\
& =\frac{1.3 \sin 44^{\circ}}{\sin 35^{\circ}} \\
& \\
& =1.6 \mathrm{~m}
\end{aligned}
\end{array}
$$

$\therefore$ The other two sides are 2.2 m and 1.6 m long
3. A machinist is cutting out a large triangular piece of metal to make a part for a crane. The sides of the piece measure 58 inches, 46 inches, and 62 inches. What are the angles between the sides?


$$
\begin{aligned}
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
\cos A & =\frac{(46)^{2}+(62)^{2}-(58)^{2}}{2(46)(62)} \\
\operatorname{Cos} A & =\frac{2596}{5704} \\
\cos A & =0.4551 \\
A & =\cos ^{-1}(0.4551) \\
& =62.9^{\circ}
\end{aligned}
$$

$$
C=180^{\circ}-A-B .
$$

$$
=180^{\circ}-62.9^{\circ}-44.9^{\circ}
$$

$$
=72.2^{\circ}
$$

$\therefore$ The angles are $44.9^{\circ}, 62.9^{\circ}$ and $72.2^{\circ}$
10. A pole is supported by two guy wires, as shown. One wire is attached to the top of the pole and the other is attached at the midpoint.
a) Determine the height of the pole.
b) How far from the base of the pole are the wires anchored?

$\rightarrow$ The height is $2 x$ because the wide, is attached at the mid point.

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
x^{2} & =14^{2}+11^{2}-2(14)(11) \cos 170 \\
x^{2} & =317-294.54 \\
x^{2} & =22.46 \\
x & =\sqrt{22.46} \quad \begin{aligned}
x & =4.7 \mathrm{~m} \quad \text { Height }
\end{aligned} \\
& =2 x \\
& =2(4.7 \mathrm{~m}) \\
& =9.4 \mathrm{~m}
\end{aligned}
$$


b) ${ }^{1 \mathrm{~m}}$

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
y^{2}+9.4^{2}=11^{2} \\
y^{2}=11^{2}-9.4^{2} \\
y^{2}=32.64 \\
y=\sqrt{32.64} \\
y=5.7
\end{gathered}
$$

$\therefore$ The wires are 5.7 m from the base of the pole.

