- Enough steps shown to clearly demonstrate thinking
- Solutions that are neat and easy to follow
- Proper use of mathematical symbols
- Equal signs aligned

- Units used as required
- Concluding statements for all word problems
- Fractions reduced to lowest terms
- Correct rounding.

1. The volume of a cone is 900 in³. The height is four times the radius of the cone. What is the radius of the cone?

$$V_{conc} = \frac{\pi - 2h}{3}$$

$$3 \times 900 = \frac{\pi (r^2 \cdot r)}{3} \cdot \frac{3\pi u}{4} \cdot$$

2. Calculate the volume and surface area of the shape below.

3. Determine the volume and surface area of the shape below, rounded to one decimal place.

$$V = 6 \times (40 \times 6 \times 6)$$

$$= 9640 \text{ cm}^{3}$$

$$\frac{1}{2}$$

$$\frac$$

b) Calculate the minimum surface area. Round all measurements to 1 decimal place.

 $SA = 2\pi r^{2} + 2\pi rh$ = $2\pi (4.6)^{2} + 2\pi (4.6)(9.2)$... Min surface erece is 398.9 in². $\cong 398.9$

5. Convert the following measurements, rounded to 2 decimal places:

27 in. = 2.25 ft. x f	320 m = 0.32 km	2.2 lb = <u>778.8</u> g
27:12= f+	320 ÷ 10 ÷ 10 ÷ 10	1 16 = 4549
÷	kin him cam (m)	2.2×454

6. How much air is inside this empty house, which is made up of a rectangular prism base and a triangular prism roof?

2.4m 2.4m 4.5m 9.8m

V_{Total} = (05.84 + 52.92 - 158.76m³

Complete: p. 120 #1c, 7, 9d, 10d, 11, 12, 15, 16, 18, 19

Metric and Imperial Conversions

<u>Length</u>	<u>Volume</u>		
Imperial to Metric	Metric to Imperial	Imperial to Metric	Metric to Imperial
1 inch = 2.54 cm	$1 \text{ cm} \doteq 0.3937 \text{ inch}$	1 fl. ounce \doteq 28.413 mL	$1 \text{ mL} \doteq 0.0352 \text{ fl. ounce}$
1 foot = 30.48 cm	$1 \text{ m} \doteq 39.37 \text{ inches}$	1 pint ≐ 0.568 L	$1 L \doteq 1.7598 \text{ pints}$
1 foot = 0.3048 m	1 m ≐ 3.2808 feet	1 quart ≐ 1.1365 L	1 L ≐ 0.8799 quart
1 mile \doteq 1.609 km	$1 \text{ km} \doteq 0.6214 \text{ mile}$	1 gallon $\doteq 4.546$ L	$1 L \doteq 0.22$ gallon

Formula Sheet 2-Dimensional Shapes

Geometric Figure	Perimeter	Area
	P = l + l + w + w or P = 2(l + w)	A = lw
Parallelogram	P = b + b + c + c or P = 2(b + c)	A = bh
Triangle a h c b	P = a + b + c	$A = \frac{bh}{2} or A = \frac{1}{2}bh$
Trapezoid	P = a + b + c + d	$A = \frac{(a+b)h}{2} or A = \frac{1}{2}(a+b)h$
Circle	$C = \pi d$ or $C = 2\pi r$	$A = \pi r^2$

For a 2-D triangle:	OPTMIZATION FORMU For a cylinder:	LAS For a triangular prism:
c=1.414a	h=2r	c = 1.414s
$a = \frac{P}{3.414}$	$r = \sqrt{\frac{SA}{6\pi}}$	$l = \frac{SA - s^2}{3.414s}$
$a = \sqrt{2A}$	$r = \left(\frac{V}{2\pi}\right)^{\frac{1}{3}}$	$l = \frac{2V}{s^2} \text{or} s = \sqrt{\frac{2V}{l}}$

Geometric Figure	Surface Area	Volume
Cylinder	$egin{aligned} A_{base} &= \pi r^2 \ A_{lateralarea} &= 2\pi rh \ A_{total} &= 2A_{base} + A_{lateralarea} \ &= 2\pi r^2 + 2\pi rh \end{aligned}$	$V = \pi r^2 h$
Sphere r	$A = 4\pi r^2$	$V = \frac{4\pi r^3}{3}$ or $V = \frac{4}{3}\pi r^3$
Cone	$egin{aligned} A_{base} &= \pi r^2 \ A_{lateralarea} &= \pi rs \ A_{total} &= A_{base} + A_{lateralarea} \ &= \pi r^2 + \pi rs \end{aligned}$	$V = \frac{\pi r^2 h}{3} or V = \frac{1}{3}\pi r^2 h$
Square-based Pyramid	$egin{aligned} A_{base} &= b^2 \ A_{triangle} &= rac{bs}{2} \ A_{total} &= A_{base} + 4A_{triangle} \ &= b^2 + 2bs \end{aligned}$	$V = \frac{b^2 h}{3} or V = \frac{1}{3}b^2 h$
Rectangular Prism	A = wh + wh + lw + lw + lh + lh or A = 2(wh + lw + lh)	V = lwh
Triangular Prism	$egin{aligned} A_{base} &= rac{bl}{2} \ A_{rectangles} &= ah + bh + ch \ A_{total} &= 2A_{base} + A_{rectangles} \ &= bl + ah + bh + ch \end{aligned}$	$V = \frac{blh}{2} or V = \frac{1}{2}blh$

Formula Sheet 3-Dimesional Shapes