- Enough steps shown to clearly demonstrate thinking
- Solutions that are neat and easy to follow
- Proper use of mathematical symbols
- Equal signs aligned
- Units used as required
- Concluding statements for all word problems
- Fractions reduced to lowest terms
- Correct rounding.

1. The volume of a cone is $900 \mathrm{in}^{3}$. The height is four times the radius of the cone. What is the radius of the

$$
\begin{aligned}
& 3 \times 900=\frac{\pi r^{2} h}{3} \\
& \frac{2700}{\pi}=\frac{\pi r^{2} \cdot r}{\pi} \cdot 3 \text { multiply B.S } \\
& \begin{array}{l}
\text { cone } 3 \text { to cancel } \\
\text { out in } R
\end{array} \\
& \begin{array}{l}
\text { divide BS by } \pi \\
\text { to cancel out } x \\
\text { on RS }
\end{array}
\end{aligned}
$$ height is

\therefore Radius is approx 9.5 in.

2. Calculate the volume and surface area of the shape below.

$$
\begin{aligned}
V & =l \cdot w \cdot h \\
& =10 \cdot 5 \cdot 2 \\
& =100 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
S_{A} & =2(\omega h+\omega l+(h) \\
& =2(5.2+5.10+2 \cdot 10) \\
& =160 \mathrm{~cm}^{2}
\end{aligned}
$$

3. Determine the volume and surface area of the shape below, rounded to one decimal place.

There

There 're 6 rectangular prism that make up of these stairs.

$$
=6 \times(40 \times 6 \times 6)
$$

$$
=8640 \mathrm{~cm}^{3}
$$

1 Surface Ara
1 Erontere 3 rectangles 40 by 6
$\left.\begin{array}{l}\text { Back: } 3 \text { rectangles } 40 \text { by } 6 \\ \text { Top }: 3 \text { rectangles } 40 \text { by } 6\end{array}\right\} 12 \times(40 \times 6)$
Bottom: 3 rectangles 40 by 6
Sides: 6 on each side, Total 12 rectangles 6 by 6

$$
\begin{aligned}
S A & =12 \times(40 \times 6)+12(6 \times 6) \\
& =2880+432 \\
& =3312 \mathrm{~cm}^{2}
\end{aligned}
$$

\qquad
Day 2: Exam Review
4. A cylindrical can of tomato paste has been designed to have a minimum surface area. It has a volume of 600 in. ${ }^{3}$
a) Calculate the optimal dimension: radius and height

$$
\begin{aligned}
& V= 600 \mathrm{in}^{3} \\
& r=\left(\frac{V}{2 \pi}\right)^{1 / 3} \\
& O R \\
& r=\left(\frac{600}{2 \cdot \pi}\right)^{1 / 3} \\
& r=(95.49)^{1 / 3}
\end{aligned}
$$

$$
\left.\frac{r=(4 N s)}{(r \cong 4.6 i n}\right)
$$

b) Calculate the minimum surface area. Round all measurements to 1 decimal place.

$$
\begin{aligned}
S A & =2 \pi r^{2}+2 \pi r h \\
& =2 \pi(4.6)^{2}+2 \pi(4.6)(9.2) \quad \therefore \text { Min surface Gre is } 398.9 \mathrm{in}^{2} . \\
& \cong 398.9
\end{aligned}
$$

5. Convert the following measurements, rounded to 2 decimal places:

6. How much air is inside this empty house, which is made up of a rectangular prism base and a triangular prism roof?

$$
\begin{aligned}
V_{T_{0+a 1}} & =105.84+52.92 \\
& =158.76 \mathrm{~m}^{3}
\end{aligned}
$$

Complete: p. 120 \#ce, 7, 9d, 10d, 11, 12, 15, 16, 18, 19

Metric and Imperial Conversions

Length	
Imperial to Metric	Metric to Imperial
1 inch $=2.54 \mathrm{~cm}$	$1 \mathrm{~cm} \doteq 0.3937$ inch
1 foot $=30.48 \mathrm{~cm}$	$1 \mathrm{~m} \doteq 39.37$ inches
1 foot $=0.3048 \mathrm{~m}$	$1 \mathrm{~m} \doteq 3.2808$ feet
1 mile $=1.609 \mathrm{~km}$	$1 \mathrm{~km} \doteq 0.6214$ mile

Volume

Imperial to Metric	Metric to Imperial
1 fl. ounce $\doteq 28.413 \mathrm{~mL}$	$1 \mathrm{~mL} \doteq 0.0352$ fl. ounce
$\quad 1$ pint $\doteq 0.568 \mathrm{~L}$	$1 \mathrm{~L} \doteq 1.7598$ pints
1 quart $\doteq 1.1365 \mathrm{~L}$	$1 \mathrm{~L} \doteq 0.8799$ quart
1 gallon $\doteq 4.546 \mathrm{~L}$	$1 \mathrm{~L} \doteq 0.22$ gallon

Formula Sheet 2-Dimensional Shapes

Geometric Figure	Perimeter	Area
Rectangle	$P=l+l+w+w$ or $P=2(l+w)$	$A=l w$
Parallelogram	$P=b+b+c+c$ or $P=2(b+c)$	$A=b h$
Triangle	$P=a+b+c$	$A=\frac{b h}{2} \quad \text { or } \quad A=\frac{1}{2} b h$
Trapezoid	$P=a+b+c+d$	$A=\frac{(a+b) h}{2} \quad \text { or } \quad A=\frac{1}{2}(a+b) h$
Circle	$C=\pi d \quad$ or $\quad C=2 \pi r$	$A=\pi r^{2}$

For a 2-D triangle:	OPTMIZATION FORMULAS For a cylinder:	For a triangular prism: $c=1.414 a$
$h=2 r$	$c=1.414 s$	
$a=\frac{P}{3.414}$	$r=\sqrt{\frac{S A}{6 \pi}}$	$l=\frac{S A-s^{2}}{3.414 s}$
$a=\sqrt{2 A}$	$r=\left(\frac{V}{2 \pi}\right)^{\frac{1}{3}}$	$l=\frac{2 V}{s^{2}}$ or $s=\sqrt{\frac{2 V}{l}}$

Formula Sheet

3-Dimesional Shapes

Geometric Figure	Surface Area	Volume
Cylinder	$\begin{aligned} A_{\text {base }} & =\pi r^{2} \\ A_{\text {lateral area }} & =2 \pi r h \\ A_{\text {total }} & =2 A_{\text {base }}+A_{\text {lateral area }} \\ & =2 \pi r^{2}+2 \pi r h \end{aligned}$	$V=\pi r^{2} h$
Sphere	$A=4 \pi r^{2}$	$V=\frac{4 \pi r^{3}}{3} \quad$ or $\quad V=\frac{4}{3} \pi r^{3}$
Cone	$\begin{aligned} A_{\text {base }} & =\pi r^{2} \\ A_{\text {lateral area }} & =\pi r s \\ A_{\text {total }} & =A_{\text {base }}+A_{\text {lateral area }} \\ & =\pi r^{2}+\pi r s \end{aligned}$	$V=\frac{\pi r^{2} h}{3} \quad$ or $\quad V=\frac{1}{3} \pi r^{2} h$
Square-based Pyramid	$\begin{aligned} A_{\text {base }} & =b^{2} \\ A_{\text {triangle }} & =\frac{b s}{2} \\ A_{\text {total }} & =A_{\text {base }}+4 A_{\text {triangle }} \\ & =b^{2}+2 b s \end{aligned}$	$V=\frac{b^{2} h}{3} \quad$ or $\quad V=\frac{1}{3} b^{2} h$
Rectangular Prism h	$A=w h+w h+l w+l w+l h+l h$ or $A=2(w h+l w+l h)$	$V=l w h$
Triangular Prism	$\begin{aligned} A_{\text {base }} & =\frac{b l}{2} \\ A_{\text {rectangles }} & =a h+b h+c h \\ A_{\text {total }} & =2 A_{\text {base }}+A_{\text {rectangles }} \\ & =b l+a h+b h+c h \end{aligned}$	$V=\frac{b l h}{2} \quad$ or $\quad V=\frac{1}{2} b l h$

