EXPONENT RULES

1. Multiplication Rule:

$$
\left(a^{m}\right)\left(a^{n}\right)=a^{m+n}
$$

2. Power of a Product Rule:

$$
\left(a^{G}\right)^{m}=a^{m} b^{m}
$$

3. Power of a Power Rule:

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

4. Division Rule:

$$
\frac{\left(a^{m}\right)}{\left(a^{n}\right)}=a^{m-n}
$$

$$
\text { e.g. } \begin{aligned}
\frac{x^{4}}{x^{2}} & =x^{4-2} \\
& =x^{2}
\end{aligned}
$$

5. Quotient Rule:

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}
$$

$$
\text { e.g. }\left(\frac{x^{3}}{y^{4}}\right)^{2}=\frac{x^{3 \cdot 2}}{y^{4 \cdot 2}}
$$

$$
=x^{6} / y^{8}
$$

6. Zero Exponent

A power with an exponent of zero is equal to ...

$$
b^{0}=1
$$

$$
\text { e.g. } 9^{\circ}=1
$$

7. Negative Exponent

When you are evaluating a power with a negative exponent, you...
$\left(y^{3.3}\right)$
Case $1 . b^{-x}=\frac{1}{b^{x}}$ e.g. $3^{-1}=1 / 3$

$$
\text { e.g. } 3^{-2}=\frac{1}{3^{2}}=1 / 9
$$

Case 2. $\left(\frac{a}{b}\right)^{-1}=\left(\frac{b}{a}\right)^{1}=\frac{b}{a}$
e.g. $\left(\frac{4}{3}\right)^{-1}=\left(\frac{3}{4}\right)^{1}=3 / 4$

$$
\text { e.g. }\left(\frac{4}{3}\right)^{-2}=\left(\frac{3}{4}\right)^{2}=\frac{3^{2}}{4^{2}}=9 / 16
$$

Practice:

$$
\begin{aligned}
\text { i. }\left(3 m^{2} n\right)\left(4 m n^{3}\right) & =12 m^{2+1} n^{1+3} & \text { 2. } \frac{24 k^{5} q^{3}}{2 k^{2} q} & =12 k^{5-2} q^{3-1} \\
& =12 m^{3} n^{4} & & 3 \cdot\left(2 a^{3} b^{2}\right)^{3}=(2)^{2}\left(q^{3 \cdot 3}\right)\left(b^{2 \cdot 3}\right)
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
\frac{\left(2 x^{2} y^{3}\right)\left(3 x^{3} y^{2}\right)^{2}}{\left(4 x^{5} y^{5}\right)} & =\frac{\left(2 x^{2} y^{3}\right)(3)^{2}\left(x^{3 \cdot 2}\right)\left(y^{2 \cdot 2}\right)}{4 x^{5} y^{5}} \\
& =\frac{2 x^{2} y^{3}\left(9 x^{6} y^{4}\right)}{4 x^{5} y^{5}} \\
& =\frac{18 x^{2+6} \cdot y^{3+4}}{4 x^{5} y^{5}} \\
& =\frac{18 x^{8} y^{7}}{4 x^{5} y^{5}} \\
& =\frac{9 x^{8-5} y^{7-5}}{2} \\
& =\frac{9 x^{3} y^{2}}{2}
\end{aligned}
$$

5. $\left(\frac{x^{4} y}{x^{2} y^{2}}\right)^{3}=\frac{x^{4 \cdot 3} \cdot y^{1 \cdot 3}}{x^{2 \cdot 3} \cdot y^{2 \cdot 3}}$

$$
=\frac{x^{12} y^{3}}{x^{6} \cdot y^{6}}
$$

$$
=\frac{x^{12-6}}{y^{6-3}} \text { or } x^{12-6} y^{3-6}
$$

$$
=\frac{x^{6}}{y^{3}} \quad \text { or } x^{6} y^{-3}
$$

Task 1: Graphing the Exponential Relation
For each equation:
a. Fill in the table of values.
b. Draw the graph and determine the key features of each graph as indicated below the grids.
c. Check your graphs using DESMOS.

$$
y=x^{2}
$$

x	y
-3	$(-3)^{2}=9$
-2	$(-2)^{2}=4$
-1	$(-1)^{2}=1$
0	$(0)^{2}=0$
1	$(1)^{2}=1$
2	$(2)^{2}=4$
3	$(3)^{2}=9$

$$
\begin{aligned}
& y \text {-intercept }=(0,0) \\
& \text { x-intercept }=(0,0) \\
& \text { vertex }=\quad(0,0)
\end{aligned}
$$

axis of symmetry: $\quad x=0 \quad \begin{aligned} & \text { increasing as the } \\ & x \text { values increase }\end{aligned}$

$$
y=2^{x}
$$

x	y
-3	$2^{-3}=1 / 8=0.125$
-2	$2^{-2}=1 / 4=0.25$
-1	$2^{-1}=1 / 2$
0	$2^{\circ}=1$
1	$2^{1}=2$
2	$2^{2}=4$
3	$2^{3}=8$

$y=\left(\frac{1}{2}\right)^{x}$

x	y
-3	$\left(\frac{1}{2}\right)^{-3}=2^{3}=$
-2	$\left(\frac{1}{2}\right)^{2}=2^{2}=$
-1	$\left(\frac{1}{2}\right)^{-1}=2^{1}=$
0	$(1 / 2)^{2}=1$
1	$(1 / 2)^{1}=0.5$
2	$(1 / 2)^{2}=1 / 4=0.25$
3	$(1 / 2)^{3}=1 / 8=0.125$

$$
y \text {-intercept }=(0,-1)
$$

x-intercept $=$ none
\qquad
increasing or decreasing?
decrowing as the x valuer increase.

Practice

17. Match the power in the first row with the equivalent power in the second row, and the answer in the third row. Join them all with a line. The first one has been done for you.

18. Walker states that $8^{-4}=\left(\frac{1}{8}\right)^{4}$. Paige states that $8^{-4}=\frac{1}{8^{4}}$. They are both correct. Explain why.
19. Please evaluate. $D \bigcirc N O T$ use decimals. Your answer should be an integer or a fraction.
a. $3^{-4}=\frac{1}{3^{4}}=1 / 81$
b. $8^{-3}=1 / 8^{3}=1 / 512$
c. $\frac{(-2)^{-3}}{1}=\frac{1}{(-2)^{3}}=\frac{1}{-8}=-1 / 8$ d. $\frac{(-4)^{-4}}{1}=\frac{1}{(-4)^{4}}=\frac{1}{256}$
e. $13^{0}=1$

$$
\text { f. }\left(\frac{1}{2}\right)^{-1}=\left(\frac{2}{1}\right)^{1}
$$

g. $\left(\frac{1}{3}\right)^{-2}=\left(\frac{3}{1}\right)^{2}$
h. $\left(\frac{1}{10}\right)^{-4}=\left(\frac{10}{1}\right)^{4}$
$=3^{2}$
$=\frac{10^{4}}{1^{4}}$
$=9$
$=10,000$
i. $\left(\frac{2}{5}\right)^{-3}=\left(\frac{5}{2}\right)^{3}$
j. $\left(\frac{4}{7}\right)^{-2}=\left(\frac{7}{4}\right)^{2}$
$=\frac{5^{3}}{2^{3}}$
$=\frac{49}{16}$
k. $\left(\frac{5}{3}\right)^{-3}=\left(\frac{3}{5}\right)^{3}$
$=\frac{3^{3}}{5^{3}}$
$=\frac{125}{8}$

$$
=\frac{27}{125}
$$

2. Determine the value of the '?'.
a. $\quad 6^{?}=\frac{1}{216}$
b. $?^{-4}=\frac{1}{16}$
c. $7^{-2}=\frac{?}{49}$
$6^{?}=\frac{1}{6^{3}}$ $?=2$
$l_{0}=1$
$?=-3$
d. $3^{?}=\frac{1}{81}$
e. $?^{-3}=\frac{1}{8}$
f. $?^{-?}=\frac{1}{27}$
$?=-4$
$?=2$
$?=3$
3. A power has a negative exponent. The answer is $\frac{1}{16}$. What could the question have been? State THREE possibilities.

$$
\begin{aligned}
& 2^{-4}=? \\
& 4^{-2}=? \\
& 16^{-1}=?
\end{aligned}
$$

