10 Academic Day 3: Quadratics vs. Exponentials

Date: Unit 4: Quadratic Relations

EXPONENTRULES				
1. Multiplication Rule:	213	6. Zero Exponent		
$(a^m)(a^n) = a^{m+n}$	e.g. $(-x^2)(2x^3) = -2x^{2t3}$	A power with an exponent of zero is equal to \ldots		
	=-2x5	$b^{\circ} = 1$ e.g. $9^{\circ} = 1$		
2. Power of a Product Rule:				
$(ab)^m = a^m b^m$	e.g. $(-3xg)^3 = (-3)(x)(y)$	7. Negative Exponent		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	When you are evaluating a power with a negative		
3. Power of a Power Rule:		exponent, you		
$(a^m)^n = a^{mn}$	e.g. $(2x^2y^3)^3 = (2)^3(x^{23})^3$	( ^{1·3} )		
	= 8x ⁴ y ¹	Case 1. $b^{-x} = \frac{1}{b^x}$		
4. Division Rule:	J. J	Case 1. $b^{-x} = \frac{1}{b^{x}}$ e.g. $3^{-1} = \frac{1}{3}$ e.g. $3^{-2} = \frac{1}{3^{2}} = \frac{1}{9}$		
$\frac{(a^m)}{(a^n)} = a^{m-n}$	e.g. $\frac{x^4}{x^2} = X^{4-2}$			
	= ^			
5. Quotient Rule:	3 3.2	Case 2. $(\frac{a}{b})^{-1} = (\frac{b}{a})^1 = \frac{b}{a}$		
$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$	e.g. $(\frac{x^3}{y^4})^2 = \frac{x^{3/2}}{y^{4/2}}$ = $\frac{x^6}{y^8}$	Case 2. $(\frac{a}{b})^{-1} = (\frac{b}{a})^{1} = \frac{b}{a}$ e.g. $(\frac{4}{3})^{-1} = (\frac{3}{4})^{1} = \frac{3}{4}$		
	J J			
	= ×/y8	e.g. $\left(\frac{4}{3}\right)^{-2} = \left(\frac{3}{4}\right)^{2} = \frac{3^{2}}{4^{2}} = \frac{9}{16}$		

Practice:

$$1. (3m^{2}n)(4mn^{3}) = 12m^{2+1}n^{1+3}$$

$$= 12m^{3}n^{4}$$

$$2. \frac{24k^{5}q^{3}}{2k^{2}q} = 12k^{5-2}q^{3-1}$$

$$= 12k^{3}q^{2}$$

$$3. (2a^{3}b^{2})^{3} = (2)^{3}(q^{3}\cdot 3)(b^{2}\cdot 3)$$

$$= 8a^{9}b^{6}$$

$$4 \cdot \frac{(2x^{2}y^{3})(3x^{3}y^{2})^{2}}{(4x^{5}y^{5})} = \frac{(2x^{4}y^{3})(3)^{4}(x^{3}y^{2})(y^{2}y^{2})}{4(x^{5}y^{5})} \qquad 5 \cdot (\frac{x^{4}y}{x^{2}y^{2}})^{3} = \frac{x^{4} \cdot y^{1+3}}{x^{2+3} \cdot y^{2+3}} = \frac{2x^{2}y^{3}(9x^{6}y^{4})}{4(x^{5}y^{5})} \qquad = \frac{x^{12}y^{3}}{x^{6} \cdot y^{4}} = \frac{18x^{2+6} \cdot y^{3+4}}{4(x^{5}y^{5})} \qquad = \frac{x^{12-6}}{y^{6-3}} \quad \text{or} \quad x^{12-6}y^{3-6} = \frac{18x^{8}y^{7}}{4(x^{5}y^{5})} = \frac{9x^{8}y^{7}}{2} = \frac{11}{2}$$

# Task 1: Graphing the Exponential Relation

For each equation:

- a. Fill in the table of values.
- b. Draw the graph and determine the key features of each graph as indicated below the grids.
- c. Check your graphs using DESMOS.

$y = x^2$			
x	y		
-3	$(-3)^2 = 9$		
-2	$(-2)^2 = 4$		
~1	$(-1)^{2} = 1$		
0	(o) ² = 0		
1	$(1)^{2} = l$		
2	$(2)^{2} = 4$		
3	(3) ² =9		

$y = 2^x$			
x	y		
-3	2-3=1/8 =	0.125	
-2	22=1/4=	0.25	
- 1	2'= 1/2	-0.5	
0	2°= 1		
1	2'=2		
2	22=4		
3	2³=8		

$y = \left(\frac{1}{2}\right)^x$				
x	<i>y</i>			
-3	(±) ³ = 2 ³ = 8			
~2	( ¹ / ₂ ) ² =2 ² = 4			
- 1	(±)'=2'= 2			
0	(次)=上			
1	(1)= 0.5			
2	(1/2)2= 1/4= 0.25			
3	$(\frac{1}{2})^{3} = \frac{1}{8} = 0.12$			



#### 10 Academic Day 3: Quadratics vs. Exponentials

## Practice

17. Match the power in the first row with the equivalent power in the second row, and the answer in the third row. Join them all with a line. The first one has been done for you.



18. Walker states that  $8^{-4} = \left(\frac{1}{8}\right)^4$ . Paige states that  $8^{-4} = \frac{1}{8^4}$ . They are both correct. Explain why.

1. Please evaluate. DO NOT use decimals. Your answer should be an integer or a fraction.

a. 
$$3^{-4} = \frac{1}{3} = \frac{1}{81}$$
 b.  $8^{-3} = \frac{1}{83} = \frac{1}{512}$ 

c. 
$$(-2)^{-3} = \frac{1}{(-2)^3} = \frac{1}{-8} = \frac{1}{8} = \frac{1}{8} = \frac{1}{1} = \frac{1}{(-4)^4} = \frac{1}{256}$$
 e.  $13^0 = 1$ 

f. 
$$\left(\frac{1}{2}\right)^{-1} = \left(\frac{2}{1}\right)^{\prime}$$
  
 $= 2$ 
 $g \cdot \left(\frac{1}{3}\right)^{-2} = \left(\frac{3}{1}\right)^{2}$ 
 $h \cdot \left(\frac{1}{10}\right)^{-4} = \left(\frac{10}{1}\right)^{4}$ 
 $= \frac{10^{4}}{1^{4}}$ 
 $= 9$ 
 $h \cdot \left(\frac{1}{10}\right)^{-4} = \left(\frac{10}{1}\right)^{4}$ 
 $= \frac{10^{4}}{1^{4}}$ 

10 Academic Day 3: Quadratics vs. Exponentials		Date: Unit 4: Quadratic Relations
i. $\left(\frac{2}{5}\right)^{-3} = \left(\frac{5}{2}\right)^{3}$	j. $\left(\frac{4}{7}\right)^{-2} = \left(\frac{7}{4}\right)^{2}$	k. $\left(\frac{5}{3}\right)^{-3} = \left(\frac{3}{5}\right)^{3}$
$=\frac{5^{3}}{2^{3}}$	$=\frac{49}{16}$	$=\frac{3^3}{5^3}$
$=\frac{125}{8}$		$=\frac{27}{125}$

- 2. Determine the value of the '?'.
  - a.  $6^{?} = \frac{1}{216}$   $6^{?} = \frac{1}{6^{3}}$ d.  $3^{?} = \frac{1}{81}$   $2^{-4} = \frac{1}{16}$ e.  $2^{-4} = \frac{1}{16}$ e.  $2^{-3} = \frac{1}{8}$ f.  $2^{-2} = \frac{1}{27}$ f.  $2^{-2} = \frac{1}{27}$ f.  $2^{-2} = \frac{1}{27}$
- 3. A power has a negative exponent. The answer is  $\frac{1}{16}$ . What could the question have been? State THREE possibilities.
  - $2^{-4} = ?$  $4^{-2} = ?$  $1_{6}^{-1} = ?$