\qquad
Day 3: Exam Review
Unit 5 \& 6: Graphical and Algebraic Models

1. Calculate the average rate of change for the tables above including the units. What does the rate of change represent for each table?
a)

b)

Pages printed	Cost (\$)
1000	56
5000	145

c)

c) $\left.$\begin{tabular}{c|c}
Distance \\
driven (km)

\quad

Fuel \\
used (L)

 \right\rvert\,

45 \& 3 \\
60 \& 12 \\
\hline
\end{tabular}

$$
\begin{aligned}
\text { slope } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{160-32}{20-4} \\
& =\frac{128}{16} \\
& =\$ 8 / 1 \mathrm{n}
\end{aligned}
$$

\therefore Every hour worked, \& \& expired

$$
\begin{array}{l|l}
=\frac{145-56}{5000-1000} & =\frac{12-3}{60-45} \\
=\frac{89}{4000} & =\frac{9}{15} \\
=0.02225 / \mathrm{page} & =0.60 \mathrm{~L} / \mathrm{km} \\
\therefore \text { cost per page } & \\
& \\
& \text { gas consumption per } \mathrm{km} \\
\text { driven }
\end{array}
$$

2. Identify each graph as linear, quadratic of none. Write your answer in the lines to the right.
a)

b)

c)

TYPE OF RELATION:
a) \qquad
b) \qquad
c) \qquad
3. Calculate the $1^{\text {st }}$ differences:

b) Calculate the $2^{\text {nd }}$ differences:

c) Calculate the growth/decay factor:

4. Determine if the graph shown represents a quadratic relation or exponential. Show/explain how you got your answer.

5. Identify each formula below as linear, quadratic or exponential.

$y=2 x+1$	$L(y=m x+b)$
$y=x^{2}+2 x+1$	$Q\left(y=A x^{2}+B x+c\right)$
$y=2^{x}$	$E\left(y=a \cdot b^{x}\right)$
$y=20(3)^{x}$	E
$y=x$	L

6. Simplify each expression using the exposer \int_{t}^{1} rules (express each as a power with positive exponents).

7. Evaluate each and leave in fraction form

\qquad

8. The following formula shows the relationship between A and B.

$$
A=\frac{2(B+30)}{3}
$$

a) Calculate B when A is 90

$$
\begin{align*}
& 3 \times 90=\frac{2(B+30)}{3} \times 3 \mathrm{multiply} B S \text { by } 3 \\
& \text { to cancel out } \div \text { on RS } \\
& \frac{270}{2}=\frac{2(B+30)}{2} \begin{array}{l}
\text { divide BS by } 2 \\
\text { to cancel out } x \text { in RS }
\end{array}
\end{align*}
$$

b) Rearrange the formula to solve for B
3. $A=\frac{2(B+30)}{3} \cdot 3$ steal: Multiply BS by 3
$\frac{3 A}{2}=\frac{2(B+30)}{2}$ Step z: Divide Bs by 2
$\frac{3 A}{2}=B+30 \quad$ Step : Subtract 30 from $B S$
10. The volume of a sphere is given by the formula $V=\frac{4}{3} \pi r^{3}$. Solve for r .

$$
\begin{array}{cl}
3 \cdot V=\frac{4}{3} \pi r^{3} \cdot 3 & \frac{\text { Step }: \text { Multiply BS by } 3}{} \\
\frac{3 V}{4 \pi}=\frac{4 \pi r^{3}}{4 \pi} \quad \frac{\text { Step } 2}{}: \text { Divide BS by } 4 \pi \\
\sqrt[3]{\frac{3 V}{4 \pi}}=\sqrt[3]{r^{3}} \quad \frac{\text { Step }}{}: \text { Cube root BS } \\
\therefore r=\sqrt[3]{\frac{3 V}{4 \pi}}
\end{array}
$$

COMPLETE: p. 332 \#1, 3, 4, 9, $14+$ p. 323 \#1-3 and p. $400 \# 1,8,9,11,13,15,16,18 \mathrm{~b}$ and 19 cf

