1. Calculate the average rate of change for the tables above including the units. What does the rate of change represent for each table?

3. Calculate the 1st differences:

a)

b)

b) Calculate the 2nd differences:

c)

c) Calculate the growth/decay factor:

c)

4. Determine if the graph shown represents a quadratic relation or exponential. Show/explain how you got your answer.

0 1)2, it's quadratic b/c 2	differences
1 3) 4 are constant.	
$2 \left[9 \right]^{\circ} \left[4 \right]^{\circ}$	
3 (19) (0)	
-	

5. Identify each formula below as linear, quadratic or exponential.

y = 2x + 1	L (y=mx+6)	
$y = x^2 + 2x + 1$	$Q(y=Ax^2+Bx+a)$	-)
$y = 2^x$	E (y= 9.6x)	
$y = 20(3)^{x}$	E	
$\mathbf{y} = \mathbf{x}$	L	

6. Simplify each expression using the exponent rules (express each as a power with positive exponents).

1

$\frac{(3^{-2})(3^{3})}{3^{-1}} = \frac{3^{-2+3}}{3^{-1}}$	$ (u^{2}v^{0}w^{-1})^{-2} $ $ = (u^{2})^{-2} (w^{-1})^{-2} $	$\frac{15p^4q^3}{5p^{-3}q} = \frac{15}{5} \cdot \frac{p^4}{p^{-1}} \cdot \frac{q^3}{q}$ $= 3 \cdot p^{4-(-3)} \cdot q^{3-(1)}$
=	$= u^{2} \omega^{2}$	$= 3\rho^2 q^2$
$= 3^{(-(-1))}$ = 3 ²		

7. Evaluate each and leave in fraction form

$125^{\frac{2}{3}}$	12515	$(256)^{\frac{3}{4}}$	256 4	$(32)^{-\frac{2}{5}}$	32 2
6	25-5-	(1.4) 3/4		(25)-45	16 2
$=(5^{3})^{7_{3}}$	حا د	-(4')	4 4	52	4 2
3. =	,	$= q^{q \cdot \frac{q}{q}}$	(= 2	2 [2
= 5		- 4 ³		= 2	
= 5 ->	25	= 64		= 1/4	
-			,	~ /	Page 2 of 3

9. The following formula shows the relationship between A and B. 2(B + 30)

$$PA = \frac{Z(D+1)}{3}$$

a) Calculate B when A is 90 $3 \times 90 = \frac{2(B+30)}{3} \times 3mu | Hiply BS = \frac{3}{5}$ 4 = 2(B+30) 4 = 2(B+30) 4 = 2(B+30) 4 = 2 = 2(B+30) 4 = 2 = 2 = 2 = 2

b) Rearrange the formula to solve for B

$$S \cdot A = \frac{2(B+30)}{3} \cdot 3 \quad \frac{5+cel}{3} : Multiply BS by 3$$

$$\frac{3A}{2} = \frac{2(B+30)}{2} \quad \frac{5+cel}{2} : Divide BS by 2$$

$$\frac{3A}{2} = \frac{2(B+30)}{2} \quad \frac{5+cel}{3} : Subtract 30 \text{ from BS}$$

$$\frac{3A}{2} = \frac{B+30}{2} \quad \frac{5+cel}{3} : Subtract 30 \text{ from BS}$$

$$10. \text{ The volume of a sphere is given by the formula } V = \frac{4}{3}\pi r^{3}. \text{ Solve for r.}$$

$$3 \cdot V = \frac{4}{3}\pi r^{3} \cdot 3 \quad \frac{5+cel}{3} : Multiply BS by 3$$

$$\frac{3V}{4\pi} = \frac{4\pi r^{3}}{4\pi} \quad \frac{3+cel}{3} : Divide BS by 4\pi$$

$$\frac{3V}{4\pi} = \frac{4\pi r^{3}}{4\pi} \quad \frac{5+cel}{3} : Cube root BS$$

$$\frac{3V}{4\pi} = \frac{3\sqrt{3}}{4\pi}$$

COMPLETE: p.332 #1, 3, 4, 9, 14 + p.323 #1-3 and p.400 #1, 8, 9, 11, 13, 15, 16, 18b and 19cf

$$105 = B$$

 $\therefore B = 105$
 $B = \frac{34}{2} - 3 = 105$

135 = B+30 30 - 20