<u>(Warm-Up) Task B: The Basic Parabola y = x²</u>

- Complete the table of values, including the first differences.
- 2. Graph the parabola.

x	$y = x^2$	first				
-4	16	differences				
-3	9	9-16=-7				
-2	ý	4-9=5				
-1		1-43				
0	0	0-1=-1				
1	T IS	-0=				
1		4-1=2				
2	4	9-4=5				
3	9	16-9=7				
4	16 [
These are also referred to ↑ as the ' <u>step pattern</u> '.						

1,3,5,7

• Go to DESMOS and type $y = (x - h)^2 + k$. Then click all to add slider. Set h and k to 0. Does this graph match the one you drew above?

<u> Task k: What happens when you graph y = x² + k?</u>

- Change the slider for k to 2. What equation does that produce? $\underline{y=x^2+2}$
- 3. Describe the effect this had on the graph.

4. Complete the following information.

	x	$y = x^2 + 2$	first	vertex = (0, 2)
	-3	(-3) ² +2 = 1(diff.	
	-2	$(-2)^2 + 2 = 6$	-2	axis of symmetry = $X = O$
×	-1	$(-1)^2 + 2 = 3$	-1	
	0	$(0)^{2}+2=2_{1}$	+	direction of opening = \underline{UP}
4	1	$(1)^{2} + 2 = 3 \int_{1}^{1} \frac{1}{3}$	2	
6	2	(2)2+2-6	5	step pattern =
0	3	$(3)^2 + 2 = 11^{1/2}$	·	
				4357
		\sim		

The graph of $y = x^2 + k$ produces a vertical translation (or shift).

- the parabola will shift $\underline{v} \ \underline{\rho}$ if k > 0 (i.e. $y = x^2 + k$)
- the parabola will shift $d \circ w \wedge if k < 0$ (i.e. $y = x^2 k$)

Page 3 of 5

Plot the point. (This is your first step)

4) From the last point, move 1 unit right, then 3 units up. Plot the point. (This is your second step)5) If there is any space left in the Cartesian plane, continue with this pattern.

Equation	Vertex	Axis of Symmetry	Step Pattern From Vertex	Direction of Opening
$1)y = x^2 + 1$	(q_1)	X=0	1,3,5	uр
2) $y = x^2 - 6$	(0, -6)	メーク	1,3,5	4D
3) $y = (x - 4)^2$	(4,0)	x=4	1,3,5	4U
4) $y = (x + 7)^2$	(-7,0)	x = -7	13,5	4P
$(5)y = (x+4)^2 - 2$	(-4,-2)	×=-4	1,3,5	47
6) $y = (x-1)^2 - 3$	(1,-3)	X =	1, 3, 5, 7	Up

Task P: Practice!

15. Complete the following table.

16. Graph each parabola from the table.

