(Warm- $(1 p)$ Task B: The Basic Parabola $y=x^{2}$

1. Complete the table of values, including the first differences.
2. Graph the parabola.

x	$y=x^{2}$	first differences
-4	16	$9-16=-7$
-3	9	$4-9=-5$
-2	4	$1-4=-3$
-1	1	$0-1=-1$
0	0	$1-0=1$
1	1	0
2	4	$9-1=3$
3	9	9
4	$16-4=5$	

These are also referred to \uparrow as the 'step pattern'.

$$
1,3,5,7
$$

- Go to DESMOS and type $y=(x-h)^{2}+k$. Then click all to add slider. Set h and k to o. Does this graph match the one you drew above?

Task k : What happens when you graph $y=x^{2}+k$?

- Change the slider for k to 2. What equation does that produce? $y=x^{2}+2$

3. Describe the effect this had on the graph.

It shifted the graph 2 units UP.
4. Complete the following information.

- Change the slider for k to -6 . What equation does that produce? $y=x^{2}-6$

5. Describe the effect this had on the graph.

It shifted/translated 6 units Down
6. Complete the following information.

x	$\boldsymbol{y}=\boldsymbol{x}^{2}-\mathbf{6}$	first diff.
-3	$(-3)^{2}-6=3$	-5
-2	$(-2)^{2}-6=-2$	-3
-1	$(-1)^{2}-6=-5$	-1
0	$(0)^{2}-6=-6$	
1	$(1)^{2}-6=-5$	-1
2	$(2)^{2}-6=-2$	1
3	$(3)^{2}-6=3$	5

$$
\text { vertex }=(0,-6)
$$

axis of symmetry $=x=0$ direction of opening $=U P$
step pattern $=$

$$
135
$$

7. State the equation of each graph.
4

$$
\begin{aligned}
& \text { \#: } y=x^{2}-7 \\
& \# 2: \quad y=x^{2}-3 \\
& \# 3: y=x^{2} \\
& \# 4: y=x^{2}+3 \\
& y=x^{2}+5.5
\end{aligned}
$$

The Effect of k
The graph of $\underline{y=x^{2}+k}$ produces a vertical translation (or shift).

- the parabola will shift $\underline{4}$ if $k>0$ (i.e: $y=x^{2}+k$)
- the parabola will shift $\underline{\mathcal{O}} \underline{\underline{N}}$ if $k<0$ (i.e: $y=x^{2}-k$)

Task H : What happens when you graph $y=(x-h)^{2}$?

- Back in DESMOS; change the slider for k back to 0 .
- Change the slider for hoo -5 . What equation does that produce in vertex form? (HINT: Sub -5 for h)

$$
y=(x+5)
$$

8. Describe the effect this had on the graph.

The graph shifted/translated 5 units left
9. Complete the following information:

x	$y=(x+5)^{2}$	first differences
-8	$(-8+5)^{2}=9$	-5
-7	$(-7+5)^{2}=4$	-3
-6	$(-6+5)^{2}=1$	-1
-5	$(-5+5)^{2}=1$	-1
-4	$(-4+5)^{2}=1$	1
-3	$(-3+5)^{2}=4$	
-2	$(-2+5)^{2}=9$	

$$
\text { vertex }=(5,0)
$$

$$
\text { axis of symmetry }=x=-5
$$

$$
\text { direction of opening }=4 p
$$

step pattern $=$

$$
135
$$

- Back in DESMOS; change the slider for h to 4.

What equation does that produce in vertex form? - $y=(x-4)$
10. Describe the effect this had on the graph.

It shifted/translated 4 units R16HT
11. Complete the following information:

$$
\text { vertex }=(4,0)
$$

$$
\text { axis of symmetry }=x=4
$$

$$
\text { direction of opening }=U T
$$

step pattern =

$$
135
$$

12. State the equation of each graph.

\#1: $y=(x+5)^{2}$
*2: $y=(x+2)^{2}$
\#3: $-y=x^{2}$
\#4: $y=(x-4)^{2}$
\#5: $y=(x-7)^{2}$

The Effect of h
 The graph of $y=(x-h)^{2}$ produces a horizontal translation (or shift).
 the parabola will shift $\mathcal{R} \perp$ HI if $h>0 \quad$ (ie: $y=\left(x-{ }^{+} h\right)^{2}$ or $\left.y=(x-h)^{2}\right)$
 - the parabola will shift $L \underline{E}$ I if $h<0 \quad$ (i.e: $y=(x-h)^{2}$ or $\left.y=(x+h)^{2}\right)$

Task T: What happens when they're together $y=(x-h)^{2}+k$?

- Back in DESMOS, change the slider for k to 1 and for h to -3 .

What equation does that produce in vertex form? $y=(x+3)^{2}+1$
13. Describe the effect this had on the graph.

It shifted/translated 3 units left and I unit up,
14. Complete the following information:

$$
\begin{aligned}
& \text { vertex }=(-3,1) \\
& \text { axis of symmetry }=x=-3
\end{aligned}
$$

$$
\text { direction of opening }=U P
$$

$$
\text { step pattern }=1357
$$

15. Graph the equation $y=(x-2)^{2}+3$ using the step pattern. Vertex $(2,3)$

Graphing: Step Pattern

1) State the step pattern:
2) Plot the vertex
3) From vertex, move 1 unit right, then 1 unit up.

Plot the point. (This is your first step)
4) From the last point, move 1 unit right, then 3 units up. Plot the point. (This is your second step) 5) If there is any space left in the Cartesian plane, continue with this pattern.

Task P: Practice!
15. Complete the following table.

Equation	Vertex	Axis of Symmetry	Step Pattern From Vertex	Direction of Opening
1) $y=x^{2}+1$	$(0,1)$	$x=0$	$1,3,5$	$U P$
2) $y=x^{2}-6$	$(0,-6)$	$x=0$	$1,3,5$	$U P$
3) $y=(x-4)^{2}$	$(4,0)$	$x=4$	$1,3,5$	UP
4) $y=(x+7)^{2}$	$(-7,0)$	$x=-7$	$1,3,5$	$U P$
5) $y=(x+4)^{2}-2$	$(-4,-2)$	$x=-4$	$1,3,5$	$U P$
6) $y=(x-1)^{2}-3$	$(1,-3)$	$x=1$	$1,3,5,7$	Up

16. Graph each parabola from the table.

5) $y=(x+4)^{2}-2 \quad V(-4,-2)$

a. $y=(x-1)^{2}-3 \quad V(1,-3)$

