Stretches, Compressions and Reflections of Quadratic Relations
(Warm-(1p) Task B: The Basic Parabola $y=x^{2}$

1. Complete the table of values, including the first differences.
2. Graph the parabola.
$\left.\begin{array}{|c|c|c|}\hline x & y=x^{2} & \begin{array}{c}\text { first } \\ \text { differences }\end{array} \\ \hline-4 & 16 & \\ \hline-3 & 9 & \\ \hline-2 & 4 & \\ \hline-1 & 1 & \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & 3 \\ \hline 2 & 4 & 5 \\ \hline 3 & 9 & \\ \hline 4 & 16\end{array}\right)$

the 'step pattern'.

Task A: What happens when you graph $y=a x^{2}$?

- Change the slider for h and k to 0 and for a to 2 . What equation does that produce?

3. Describe the effect this had on the graph.

The parabola otretches vertically.
4. Complete the following information.

x	$y=2 x^{2}$	first differences
-3	$2(-3)^{2}=18$	
-2	$2(-2)^{2}=8$	
-1	$2(-1)^{2}=2$	
0	$2(0)^{2}=0$	2
1	$2(1)^{2}=2$	6
2	$2(2)^{2}=8$	10
3	$2(3)^{2}=18$	

vertex $=(0)$
axis of symmetry $=x=0$ direction of opening $=\underline{L T}$
step pattern $=$

$$
2610
$$

5. How does the value of a affect the step pattern?

Doubled the step pattern

- Back in DESMOS, change the slider for a to $1 / 2$ (or 0.5). The equation:

6. Describe the effect this had on the graph.

The graph gets compressed vertically
7. Complete the following information.

x	$y=1 / 2 x^{2}$	first differences
-3	$\frac{1}{2}(-3)^{2}=4.5$	
-2	$\frac{1}{2}(-2)^{2}=2$	
-1	$\frac{1}{2}(-1)^{2}=0.5$	
0	$\frac{1}{2}(0)^{2}=0$	
1	$\frac{1}{2}(1)^{2}=0.5$	
2	$\frac{1}{2}(2)^{2}=2$	
3	$\frac{1}{2}(3)^{2}=4.5$	0.5
1.5		

$$
\text { vertex }=(0,0)
$$

axis of symmetry $=X=0$
direction of opening $=L \varphi$
step pattern $=$

$$
0.7 \quad 1.5 \quad 2.5
$$

8. How does the value of a affect the step pattern? It halved the step pattern

- Back in DESMOS, change the slider for a to -i. What equation does that pro

9. Describe the effect this had on the graph.
The graph got reflected about the " x " axis
10. Complete the following information.

x	$y=-1 x^{2}$	first differences
-3	$-1(-3)^{2}=-9$	
-2	$-1(-2)^{2}=-4$	
-1	$-1(-1)^{2}=-1$	
0	0	-1
1	$-1(1)^{2}=-1$	-3
2	$-1(2)^{2}=-4$	-3
3	$-1(3)^{2}=-9$	-5

$$
\begin{aligned}
& \text { vertex }=(0,0) \\
& \text { axis of symmetry }=x=0 \\
& \text { direction of opening }=\text { down } \\
& \text { step pattern }= \\
& -1-3-5
\end{aligned}
$$

11. How does the value of a affect the step pattern?

It negated the a values.
12. If the equation was $y=-3 x^{2}$, what do you think the properties and graph would be? Try them in PENCIL!

$$
\begin{aligned}
& \text { vertex }=(0,0) \\
& \text { axis of symmetry }=\frac{x=0}{} \\
& \text { direction of opening }=\frac{\text { down }}{} \\
& \text { step pattern }=-3-9-15
\end{aligned}
$$

- Back in DESMOS, change the slider for a to -3 and confirm or adjust your answer above.

The graph of $\underline{y=a x^{2}}$ produces a

$$
\text { vertex }=(0,0)
$$

- vertical reflection if $a<0$ (e.g: $y=-2 x^{2}$)

$$
\text { axis of symmetry }=\frac{x=0}{4 \cdot(1,3,5,7)}
$$

$$
\text { step pattern }=4 \quad 12 \quad 20 \quad 28^{\prime}
$$

- vertical compression if $|a|<1$ (e.g: $y=\frac{1}{4} x^{2}$) if $a>0$ UP
if $a<0$ down

Note: the | | signs around the a value are "absolute value" signs. It means to consider the numerical (number) value without considering the sign (positive or negative).

Task P: Practice!
13. Graph each parabola.
a. $y=3 x^{2}$

$$
3(1,3,5)
$$

$$
\text { Step Pattern: } 3915
$$

$$
\text { Vertex }(0,0)
$$

b. $y=-2 x^{2}$

Step Pattern: $2 \quad-6 \quad-10$ \qquad
c. $y=\frac{1}{4} x^{2}$

Step Pattern: $0.250 .751 .25 \quad 1,75$

Unit 4: Quadratic Relations
d. $y=4 x^{2} \quad 4(1,3,5)$

Step Pattern: $4 \quad 12 \quad 20 \quad 28$
e. $\begin{array}{r}y=-\frac{1}{2} x^{2} \quad-0.5(1,3,5,7) \\ \text { Step Pattern: }-0.5-1.5-2.5-3.5\end{array}$
f. $y=5 x^{2} \quad 5(1,3,5,7)$ Step Pattern: $5 \quad 15 \quad 25 \quad 35$
g.

$y=-\frac{1}{3} x^{2}$

$$
\text { Step Pattern: } \frac{-\frac{1}{3}-1}{\frac{-5}{3}} \frac{-\frac{7}{3}}{-1 \frac{2}{3}}-\frac{1}{1} \frac{1}{3}
$$

