\qquad

WHAT IS THE EQUATION?
Determine the equation in vertex form: $y=a(x-h)^{2}+k$

\qquad

$$
\text { is } h^{(4,-2) .}
$$

Steel $y=a(x-h)^{2}+k$

$$
\begin{aligned}
1 & =a_{1}(7-4)^{2}-2 \\
1+2 & =a(3)^{2} \\
\frac{3}{9} & =\frac{9 a}{9} \\
0_{1} & =1 / 3
\end{aligned}
$$

$$
\therefore y=-(x)^{2}-3
$$

$$
\begin{aligned}
& -2=a(\theta-2)^{2}+0 \\
\frac{-2}{4} & =\frac{4 a}{4} \\
& a=-1 / 2 \\
\therefore & y=\frac{-1}{2}(x-2)^{2}
\end{aligned}
$$

$$
\begin{gathered}
h^{h} r^{k} \\
\text { The vertex is }(0,-3) . \\
y=a(x-h)^{2}+k
\end{gathered}
$$

$$
-4=a(1-0)^{2}-3
$$

$$
-4+3=9
$$

$$
a=-1
$$

The vertex is $(-3,-4)$. Another point is $(-2,1)$.

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& 1=a(-2-(-3))^{2}-4 \\
& 5=a(-2+3)^{2} \\
& 04=5
\end{aligned}
$$

The vertex is $(-4,8)$. Another point is $(0,0)$.

$$
\begin{aligned}
y & =a(x-h)^{2}+k \\
0 & =a(0-(-4))^{2}+8 \\
\frac{-8}{16} & =\frac{16 a}{16} \\
a & =-1 / 2
\end{aligned}
$$

The vertex is $(5,1)$. Another point is $(1,5)$.

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& 5=a(1-5)^{2}+1 \\
& \frac{4}{16}=\frac{16 a}{16} \\
& a=1 / 4 \quad \therefore y=-
\end{aligned}
$$

h
$r, k \quad a=-1$

1. Find the equation of the parabola with vertex $(0,-6)$, opening down and a vertical compression factor of $1 / 3$.

$$
y=a(x-h)^{2}+k \Longrightarrow \begin{aligned}
& h=0 \\
& k=-6 \\
& a=-\frac{1}{3}
\end{aligned} \quad y=\frac{-1}{3}(x)^{2}-6
$$

2. Find the equation of the parabola with vertex $(0,4)$, opening down and vertical stretch by a factor of 2 .

$$
\begin{aligned}
& h=0 \\
& k=4 \\
& a=-2
\end{aligned} \quad y=-2(x-0)^{2}+4 \Rightarrow y=-2 x^{2}+4
$$

3. Find the equation of the parabola compressed vertically by a factor of one-quarter, and then translated 4 units to the right and one unit up.

$$
\begin{aligned}
& a=1 / 4 \\
& h=4 \\
& k=1
\end{aligned} \quad y=\frac{1}{4}(x-4)^{2}+1
$$

4. What happens to the point $(3,9)$ on the graph of $y=x^{2}$ when the parabola is reflected about the x-axis then stretched vertically by a factor of two?

$$
(3,9) \longrightarrow(3,-18)
$$

5. Find the value of ko that the parabola $y=-\frac{1}{3} x^{2}+k$ passes through $(6,8)$.

6. Find the value of a and k so that the parabola passes through the points $(1,-1)$ and $(2,5)$

7. Write an equation for the parabola with a vertex ${ }^{(-5,-3)}$ passing through $(-3,-11)$.
$\begin{aligned} y & =a(x-h)^{2}+k \\ -11 & =a(-3-(-5))^{2}-3\end{aligned} \int \begin{aligned}-8 & =4 a \\ a & =-2\end{aligned}$
$\therefore y=-2(x+5)^{2}-3$

Applications of the Quadratic Relation:

8. A red flare is used by some boaters in an emergency. The flight of the flare is modelled by the function $h=-9(t-3)^{2}+83$ where h is the height (m) of the flare and t is the time (s) that the flare is in flight.
a) Sketch the path of the flare.

b)

What is the maximum height reached by the flare?
83 m .
c)

After how many seconds does the flare reach its maximum height?
3 seconds
d)

What is the height of the flare after 2 seconds?
72 m
e)

Find another time that the flare is at the height in part d 4 sec.

