1. Please fill in the blank below with the proper terms.

2. Use each equation to complete the table of values and then plot the points on the grid provided. Please also state which type of relationship (i.e. Linear, Quadratic, Neither) each one is and state 3 ways you know.

Type of Relation? QUADEATIC

How do you know? (There are 3 ways to tell)

- 2nd differencies EQUAL - Equation is 2nd degree - Graphis a curve

I

3. Graph each of the following:

4. Please evaluate the following powers. NO DECIMALS. Leave your answers as integers or fractions.

a) $3^{-5} = \frac{1}{3^5} = \sqrt{243}$	b) 2^{-3} - $\frac{1}{2^3}$ = $\frac{1}{8}$	c) $4^{-3} = \frac{1}{43} = \frac{1}{64}$
d) $(-5)^{-4} = \frac{1}{(-5)^4} = \frac{1}{625}$	e) 10^0 = (f) $(-2)^{-8}$
d) $(-5)^{-4} = \frac{1}{(-5)^{4}} = \frac{1}{625}$ g) $\left(\frac{1}{6}\right)^{-3} = \frac{1}{6}$ (6) $^{3} = 216$	h) $\left(\frac{1}{10}\right)^{-5} = \left(\frac{10}{7}\right)^{5} = 100$	c) $4^{-3} = \frac{1}{4^3} = \frac{1}{64}$ f) $(-2)^{-8} = \frac{1}{(-2)^8} = \frac{1}{2^{-2}}$ $\frac{1}{2^{-2}} = \frac{1}{2^{-2}} = \frac{1}{2^{-2}}$ $\frac{1}{2^{-2}} = \frac{1}{2^{-2}} = \frac{1}{2^{-2}}$

5. Please complete the chart below:

Parabola Graph			$-2 = -2(x+5)^{2} + 7$ $-6 = -2(x+5)^{2} + 7$ $-8 = -6 + 4 + 2 = -42$
Vertex	(0,5)	(3,0)	(-5, 8)
Is there a Max or a Min?	min	MM	Max
State the Max or Min value	m=n=5	m in = 0	max=8
Equation of Axis of Symmetry (and draw it on the graph)	X= 0	X=3	X=-5
Zeros if possible	n/a	(3, <i>0</i>)	$(-7_{1}0)$ $(-3_{1}0)$
Direction of Opening	UP	ЦР	
y – intercept	(<i>0</i> ,5)	(0 ₁ 9)	DOWN Can't tell from the graph

Please determine the equation of each parabola.

