EQAO PRACTICE BOOKLET \#1 - Algebra

OPEN RESPONSE QUESTIONS

A Expand and simplify the following expression:

$$
\begin{aligned}
& 2\left(x^{2}-2 x+1\right)-x(x-3) \\
= & 2 x^{2}-4 x+2-x^{2}+3 x \\
= & 2 x^{2}-x^{2}-4 x+3 x+2 \\
= & x^{2}-x+2
\end{aligned}
$$

B Expand and simplify.

$$
\begin{aligned}
& 2\left(3 x^{2}-5 x\right)+4 x(7+x) \\
= & 6 x^{2}-10 x+28 x+4 x^{2} \\
= & 6 x^{2}+4 x^{2}-10 x+28 x \\
= & 10 x^{2}+18 x
\end{aligned}
$$

C What Side?
The perimeter of the triangle below is 75 m .

Determine the measure of each side of the triangle.
Show your work.

$$
\begin{aligned}
2 x+3+3 x+4+2 x-9 & =75 \\
2 x+3 x+2 x+3+4-9 & =75 \\
7 x-2+2 & =75+2 \\
\frac{7 x}{7} & =\frac{77}{7} \\
x & =11
\end{aligned}
$$

MULTIPLE CHOICE QUESTIONS:

1. Tim shows the steps he took in simplifying the following algebraic expression:
2. Juan shows the steps he took in rearranging a formula:

Given $\quad P=2(l+w)$

Step $3 \quad \frac{P+2 l}{2}=w$
Step $4 \quad \frac{P}{2}+l=w$

In which step did Juan make an error?
A Step 1
B) Step 2

C Step 3
D Step 4

G Step 2
H Step 3
J Step 4
3. Simplify the following expression.

$$
\begin{aligned}
& \quad\left(x^{2}+4 x+3\right)+x(3-x) \\
& \text { F } x+3 \\
& \text { G } 3 x \\
& \text { (H) } 7 x+3 \\
& \text { J }-2 x^{2}+4 x+3 \\
& x^{2}+4 x+3+3 x-x^{2} \\
& =x^{2}-x^{2}+4 x+3 x+3 \\
& =7 x+3
\end{aligned}
$$

4. Simplify the following algebraic expression:

$$
\begin{aligned}
\frac{a^{6} b^{4}}{a^{2} b} & =a^{6-2} \cdot b^{4-1} \\
& =a^{4} b^{3}
\end{aligned}
$$

F $\frac{a^{3}}{b^{3}}$
G $\frac{a^{4}}{b^{3}}$
H $a^{3} b^{3}$
(1) $a^{4} b^{3}$
5. Eric and Julie are each asked to solve an equation.

Who has correctly solved his or her equation?

F Eric only
G Julie only
(H) Both Eric and Julie

J Neither of them
6. In a soccer league, a win counts for 2 points, a tie counts for 1 point and a loss counts for 0 points. A soccer team has 5 wins, 2 ties and 3 losses.

$$
3 x-4-x=x+12-x
$$

$$
\begin{array}{ll}
2 x-4^{+4}=12^{+4} & \begin{array}{l}
\text { If the team continues to win, tie and lose } \\
\text { in the same ratio, which of the following }
\end{array} \\
\frac{2 x}{2}=\frac{16}{2} & \begin{array}{l}
\text { values is the best prediction of their } \\
\text { point total after } 40 \text { games? }
\end{array}
\end{array}
$$

a 36 points
(D) 48 points
c 96 points
d 480 points
In 10 games $\Rightarrow 5 / 10$ wins $2 / 10$ ties $3 / 10$ losses. It's a proportion; therefore,

$$
\left.\begin{array}{rl}
\text { In } 40 \text { genes } \Rightarrow & \frac{5}{10}: \frac{x}{40} \\
\frac{10 x}{10} & =\frac{200}{10} \\
x & =20 \text { wins }
\end{array}\right\} \text { wins }
$$

Points: $20 \times 2=40$ points

$$
\begin{gathered}
\begin{array}{c}
\frac{2}{10}: \frac{x}{40} \\
\frac{10 x}{10}=\frac{80}{10} \\
x=8
\end{array} \\
\text { Points : } 8 \times 1=8 \text { points }
\end{gathered}
$$

$$
\therefore \text { Total }=40+8
$$

$$
=48 \text { points. }
$$

7. While experimenting with a toy rocket, Dan determines that he can model the rocket's height, h, in metres, with respect to time, t, in seconds, using the equation

$$
h=\frac{1}{2} t^{2}
$$

$$
h=\frac{1}{2}(10)^{2}
$$

Which calculation correctly finds the value of h when $t=10$?

$$
\begin{aligned}
\text { a } \quad h & =\frac{1}{2} \times 10^{2} \\
& =5^{2} \\
& =25 \\
\text { b } \quad h & =\frac{1}{2} \times 10^{2} \\
& =\frac{1}{2} \times 20 \\
& =10 \\
\text { c. } h & =\frac{1}{2} \times 10^{2} \\
& =\frac{1}{2} \times 100 \\
& =50 \\
\text { d } \quad h & =\frac{1}{2} \times 10^{2} \\
& =\frac{1}{4} \times 100 \\
& =25
\end{aligned}
$$

8. Asha receives $\$ 10000$.

Asha keeps half his money and gives the rest to Bertha.

Bertha keeps half her money and gives the rest to Calvin.

Calvin keeps half his money and gives the rest to Dane.

Dane keeps half his money and gives the rest to Evanna.

Which expression shows the dollar amount of money that Evanna receives from Dane?
(a) $10000 \div 2^{4 *}=625$
b $5000 \times \frac{1}{2} \times \frac{1}{2}=1250$
c $10000 \div \frac{1}{2} \div \frac{1}{2} \div \frac{1}{2} \div \frac{1}{2}$
d $2500 \div 2=1250$

9. Simplify fully:

$$
\begin{aligned}
&-5 x(4-3 x)+2 x^{2} \\
& \text { a } 2 x^{2}-17 x \\
& \text { b } 2 x^{2}-23 x \\
& \text { c } 17 x^{2}-5 x \\
& \text { (dx } 17 x^{2}-20 x \\
&=-20 x+15 x^{2}+2 x^{2} \\
&= 17 x^{2}-20 x
\end{aligned}
$$

10. Simplify the following expression:

$$
\overparen{3 x(2 x+3)}-5 x
$$

a $\quad 6 x^{2}-5 x+3$
b $6 x^{2}-6 x$
c $15 x^{2}-5 x$

$$
\text { (a) } 6 x^{2}+4 x
$$

$$
6 x^{2}+9 x-5 x
$$

$$
=6 x^{2}+4 x
$$

11. Sabeeta expands and simplifies the expression below.

$$
\overparen{2\left(3 x^{2}-5 x\right)}+\overparen{4 x(7+x)}
$$

Which expression is equivalent to the one above? $=6 x^{2}-10 x+28 x+4 x^{2}$
a $6 x^{2}+22 x=10 x^{2}+18 x$
(b) $10 x^{2}+18 x$ *

C $10 x^{2}-38 x$
d $28 x^{2}$
13. Meg has been asked to determine the value of the numerical expression below.

$$
\frac{2^{400}}{2^{396}}-2^{3}
$$

Which of the following is the value of Meg's expression?
A 1
B $2=2^{400-396}-2^{3}$
C $4=2^{4}-2^{3}$

$$
=16-8
$$

$$
=8
$$

12. If $x=3$, what is the value of $2 x^{2}+5 x$?
a $21 \quad 2(3)^{2}+5(3)$
b $27=2.9+15$
c) $33^{*}=18+15$

$$
=33
$$

d 51
15.

Which of the following represents the expression $2(3 x+4)+3(x-1)$ in a simplified form?
a $9 x+3=6 x+8+3 x-3$
(b) $9 x+5=9 x+5$

C $8 x+8$
d $8 x+11$
17. Alfredo and his wife, Jody, work in a restaurant. Last week Alfredo received an average of $\$ 15$ in tips for each of the 55 tables he served. Jody received an average of $\$ 20$ in tips for each of the 60 tables she served. They are planning a weekend trip. Alfredo will pay a total of $\$ 220$ for their hotel room and Jody will pay a total of $\$ 160$ for their rental car. How much of their combined tips will be left over after they have paid for their hotel room and rental car?
16. The expression below can be simplified.

$$
\frac{\left(x^{2} y\right)^{3}}{(x y)^{2}}
$$

Which of the following shows the expression in its simplest form?
(a) $x^{4} y$
b x^{4}
C $x y$
d $x^{3} y$

$$
\begin{aligned}
\frac{\left(x^{2} y\right)^{3}}{(x y)^{2}}=\frac{x^{6} \cdot y^{3}}{x^{2} \cdot y^{2}} & =x^{6-2} \cdot y^{3-2} \\
& =x^{4} \cdot y
\end{aligned}
$$

a $\$ 1620$ Alfredo Jody

$$
\text { Total \$ left }=605+1040
$$

$$
=k 1645
$$

