EXPONENT RULES

EXAMPLES Write each in expanded form and then evaluate to standard form

$$6^3 = 6 \times 6 \times 6$$
= 216

$$3^2 \times 2^3 = 3 \times 3 \times 2 \times 2 \times 2$$
$$= 9 \times 8$$

$$6^2 + 3^2 = 6 \times 6 + 3 \times 3$$
$$= 36 + 9$$

POWER OF A NEGATIVE NUMBER

Exponents affects ONLY the number it touches in a power. Notice the difference?

Exponents affects Of
$$-3^2 = -1 \times 3^2$$

$$= -1 \times 9$$

$$(-3)^2 = -3 \times -3$$

r it fouches in a power. Notice the difference?
$$(-3)^2 = -3 \times -3 \qquad \text{Consider } x - 2^2 = ? \quad \chi - (2 \times 2)$$

$$= 9$$

EXPONENT LAWS

Add/Subtract Powers → You can only add/subtract the _______ of the powers

$$a^m + a^n = a^m + a^n$$
 but $a^m + 3a^m = 4a^m$

- Multiply Powers → To multiply powers with the SAME base _____add______ the exponents $a^m \times a^n = A^{(m+n)}$ $x^2 \times x^3 = \chi^{(2+3)} = \chi^5$
- Divide Powers → To divide powers with the SAME base ______ the exponents $x^7 \div x^4 = \chi(7-4) = \chi^3$ $a^m \div a^n = a^m - a^m$
- Power of a Power -> To simplify a power of a power __mu/hp/y/_ the exponents $(x^4)^3 = x^{(4x3)} = x^{12}$
- Power of a Product or Quotient \rightarrow Apply the $\frac{l \times ponent}{}$ to each $\frac{term}{}$ in the product or quotient.

$$(ab)^m = a^m b^m$$

$$(xy)^3 = \chi^3 y^3$$

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

$$\left(\frac{x}{y}\right)^2 = \frac{\chi^2}{y^2}$$