EXPONENTS	Know	Арр	Think	Comm
ASSIGNMENT				
	21	17	12	10

Date:

KNOWLEDGE & UNDERSTANDING

MBF3C – Exponents

1. Write each expression as a single power. You DO NOT need to evaluate. [6 marks]

Name:

- a) $5^{2} \cdot 5^{7} = 5^{2+7}$ $= 5^{9}$ b) $8^{2} \cdot 8^{-1} = 8^{2+(-1)}$ c) $(7^{2})^{4} = 7^{2} \cdot 4^{2}$ $= 7^{8}$ d) $\frac{9^{-5} \cdot 9^{7}}{9^{-1}} = \frac{9^{-5+7}}{9^{-1}} = \frac{9^{2}}{9^{-1}}$ e) $((8^{-2})^{3})^{-2} = (8^{-2+3})^{-2} (8^{-6})^{-7}$) $(5^{12} \cdot 5^{9})^{0} = (5^{12+9})^{0}$ $= 9^{2-(-1)} = 9^{3}$ $= 8^{-6+72} = 8^{12}$ 2. Evaluate each expression as a fraction or integer (NO DECIMALS). [6 marks] a) $5^{-3} = \frac{1}{5^3} = \frac{1}{105}$ b) $\left(\frac{1}{6}\right)^{-2} = 6^2 = 36$ c) $\left(\frac{3}{2}\right)^{-3} \times \left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)^3 \times \left(\frac{2}{3}\right)$ $= \left(\frac{2}{3}\right) \cdot \left(\frac{2}{3}\right) \left(\frac{2}{3}\right) \left(\frac{2}{3}\right)$ d) $\frac{6^{-1} \cdot 6^{-2}}{6^{-1}} = \frac{6^{-1+(-2)}}{6^{-1}}$ e) $((-2)^{-3})^3 = (-2)^{-3}$ f) $(\frac{-3}{4})^{-3} = (\frac{-4}{3})^3 = (\frac{-4}{3})(-\frac{4}{3})$
- 3. Indicate whether each of the following statements is TRUE or FALSE. [5 marks]
 - 19/2 a) _____ Doubling time is the time needed for a radioactive sample to decay by half **b**) _____ In the relation $P = I(b)^t$, if b > 1 the relation represents exponential decay $P = \log_2(2)$ c) _____ The base of an exponential half-life decay relation is ALWAYS 0.5 d) _____ When you multiply powers with the same base you multiply the exponents 2 An exponential relation has no y-intercept e)

4. Calculate the growth rate of a population which increases by 105%. [2 marks] step 105% = 1.05 . The growth rete is 2.05 Step 1+1.05 = 2.05 5. Calculate the decay rate of a substance which decreases by 15%. [2 marks] Stepl 15%=0.15 Stepl 1-0.15=0.85 ... The decay rate is 0.85

APPLICATION - don't forget your concluding statements

- 6. A bacterial culture began with 1 000 bacteria. It's growth can be modeled using the formula $N = 1000(2)^{\frac{t}{5}}$, where N is the number of bacteria after t hours.
 - a) From the formula, what do the numbers 1 000, 2, and 5 represent? [3 marks]

1000 = Initial number of bacteria 2 = doubling rate 5 = how logge it takes to double the number

b) How much bacteria is present after 1 day? [3 marks]

$$1 \text{ day} = 24 \text{ hours}$$

 $24/5$
 $N = 1000(2)$
 $= 1000(2)^{4.8}$
 $= 27857.6$

7. The half-life of sodium bicarbonate is 25 days. Find the amount of sodium bicarbonate that is left after 100 days if you started with 20 grams. [3 marks]

 $\mathcal{M} = \mathcal{M}_{o} \left(\frac{1}{2}\right)^{t/h}$ $\mathcal{M} = 20(0.5)^{100/25}$. There'll be 1.25g left after 100 days. = 20(0.5) $= 1.2 \leq$

- 9. The energy produced by wind turbines in a region increased exponentially from 1980 to 1995. The amount of energy, E, in gigawatt-hours, can be modelled by the relation $E = 6.49(1.058)^t$, where t is the time in years.
 - a) How much energy was produced by wind turbines by 1992? [2 marks]

$$F = 6.49 (1.058)^{-1}$$

$$= 12 \text{ years} \cdot = 12 \text{ years$$

b) Assuming the same relation is still currently used to model the growth of wind turbines, how much energy is produced by wind turbines by **this year**? [2 marks]

THINKING

10. Given a <u>TABLE OF VALUES</u> , explain how you can determine if a relation is: [3 marks]
Linear_1st differences are equal
Quadratic 2nd DIFFERENCES ARE EQUAL
Exponential <u>Constant ratio</u> between consecutive y values.
11. Given an <u>EQUATION</u> , explain how you can determine if a relation: [3 marks]
Linear = 9 = 2x + 1
Quadratic $y = 2x^2 + 1$
Exponential <u>y = 2^x</u>
12. Given a <u>GRAPH</u> , explain how you can determine if a relation is: [3 marks]
Linear
Quadratic
Exponential
Growth 1 1 b)1 Jo(b<1 DECAY

13. Give a real-life example of a linear relation. **Hint: Look in your notes and homework** [1 mark]

Driving at a constant speed, wape us have worked

14. Give a real-life example of a quadratic relation. [1 mark]

Falling object, rainbow, teeth

15. Give a real-life example of an exponential relation. [1 mark]

Ski slope, bacteria growth

COMMUNICATION

16. The relation for doubling uses 2 as the base of the power and the formula for half-life uses $\frac{1}{2}$ as the base. What do you think the base would be if a population is tripling? Explain. [2 marks]

17. Explain why population growth, such as a fox population that grows by 2% per year represents exponential growth. [2 marks]

18. Describe the steps you would take to evaluate $\left(\frac{2}{2^{-2}}\right)^{-2}$. You may use point form. [3 marks]

+ 3 Communication marks for proper Mathematical form THROUGHOUT the test.

0	1⁄2	1	1 1⁄2	2	2 ½	3
---	-----	---	-------	---	------------	---