MCR3U1 - University Preparation

Day 4: Evaluating Trig Ratios for Angles $>\mathbf{9 0}{ }^{\circ}$

INVESTIGATE:

Step 1: Determine all the exact values of the sides for the right triangle that point A forms on the circle.
Step 2: Determine the principal angle, related acute angle and the three primary trig ratios for the principle angle.
Step 3: Reflect point A horizontally about the y-axis and form a right triangle. Label the point S.
Step 4: Determine the principal, related acute angle and the three primary trig ratios for the principle angle using calculator.
Step 5: Reflect point S vertically about the x - axis and form a right triangle. Label the point T .
Step 6: Determine the principal, related acute angle and the three primary trig ratios for the principle angle using calculator.
Step 7: Reflect point T horizontally about the y -axis and form a right triangle. Label the point C .
Step 8: Determine the principal, related acute angle the three primary trig ratios for the principle angle using calculator.

Angles	Quadrant	Sine Ratio	Cosine Ratio	Tangent Ratio	GRAPH
POINT A principal \angle \qquad related acute \angle \qquad	$\begin{aligned} & 1 \\ & \theta \end{aligned}$	$\begin{aligned} \sin \theta & =\sqrt{3} / 2 \\ \sin \theta & =0.8660 \\ & + \end{aligned}$	$\begin{gathered} \cos \theta=1 / 2 \\ \cos \theta=0.5 \\ (+) \end{gathered}$	$\begin{gathered} \tan \theta=\sqrt{3} / 1 \\ \tan \theta=1.7321 \\ + \end{gathered}$	$\begin{array}{lr} x^{2}=2^{2}-1^{2} & \cos ^{-1}(0,5)=0 \\ x^{2}=3 \\ x=\sqrt{3} & \theta=60^{\circ} \end{array}$
POINT S principal \angle $180-60=120$ related acute \angle 60	$\begin{gathered} 2 \\ 180-\theta \end{gathered}$	$\begin{gathered} \sin (180-60)=\sqrt{3} / 2 \\ \sin 120 \\ \pm 0.8660 \\ \sin (180-60)= \end{gathered}$	$\begin{aligned} \cos (180-60) & =-1 / 2 \\ \cos 120 & =-0.5 \\ \cos 120 & =-\cos 60 \end{aligned}$	$\begin{aligned} & \tan (180-60)=-\sqrt{3} / 1 \\ & \tan 120 \div-1.7321 \\ & \tan 120=-\tan 60 \end{aligned}$	
POINT T principal \angle $480+60$ related acute \angle \qquad	$\begin{gathered} 3 \\ 180+\theta \end{gathered}$	$\begin{aligned} & \sin (180+60)=-\sqrt{3} / 2 \\ & \sin (240)=-0.8660 \\ & - \\ & \sin (180+60)=-\sin 69 \end{aligned}$	$\begin{gathered} \cos (180+60)=-1 / 2 \\ \cos (240)=-0.5 \\ - \\ \cos (180+60)=-\cos 60 \end{gathered}$	$\begin{aligned} & \tan (180+60)=-\sqrt{3} /-1 \\ & \tan (240)=1.7321 \\ &+ \\ & \tan (180+60)=\tan 60 \end{aligned}$	
POINT C principal \angle 360-60 related acute \angle 60	$\begin{gathered} 4 \\ 360-\theta \end{gathered}$	$\begin{gathered} \sin (360-60)=-\sqrt{3} / 2 \\ \sin (300)=0.8660 \\ - \\ \sin (360-60)=-\sin 60 \end{gathered}$	$\begin{gathered} \cos (360-60)=1 / 2 \\ \cos (300)=0.5 \\ + \\ \cos (360-60)=\cos 60 \end{gathered}$	$\begin{aligned} & \tan (360-60)=-\sqrt{3} / 1 \\ & \tan (300)=-1.732 \\ &- \\ & \tan (360-60)=-\tan 60 \end{aligned}$	

MCR3U1 - University Preparation
Day 4: Evaluating Trig Ratios for Angles $>\mathbf{9 0}^{\circ}$
Date: \qquad

PRACTICE:

HINT: Determine in which quadrants the given ratio could have the same sign.
Solve each of the following for $0 \leq \theta \leq 360^{\circ}$.
a) $\sin \theta=0.4226$
$\sin ^{-1}(0.4226)=\theta$

$180-\theta=180-25$

$$
=155^{\circ}
$$

\therefore The angles are 25° or 155°
c) $\underbrace{\cot \theta}=8.1516$
$\frac{1}{\tan \theta}=\frac{8.1516}{1} \quad$ flip
side
$\tan \theta=\frac{1}{8.1516} \doteq 0.1227$
$\tan ^{-1}(0.1227)=\theta$
$\theta \doteq 7^{\circ}$

$180+7=187^{\circ}$
\therefore The angles are 7° or 187°.
e) $\sin \theta=0.4815$
$\sin ^{-1}(0.4815)=\theta$
$\theta=29^{\circ}$
or
$180-29=151^{\circ}$

\therefore The angles are 29° or 151°.
g) $\cos \theta=-0.8722$
$\cos ^{-1}(-0.8722)=\theta$
$\begin{gathered}02 \\ 180+29\end{gathered}=209$

\therefore The angles are 151° or 209°.
i) $\cos \theta=0.6951$
$\cos ^{-1}(0.6951)=\theta$
$360-46=314^{\circ}$
\therefore The angles are 46° and 314°.

d) $\csc \theta=-2.3424$
$\frac{1}{\sin \theta}=\frac{-2.3424}{1} \quad \begin{aligned} & \text { flip both } \\ & \text { sides }\end{aligned}$
$(1+202) \sin \theta=\frac{1}{-2.3424}$
$\sin \theta=-0.4269$
$\sin ^{-1}(0.4269)=\theta$

$$
\begin{aligned}
& 69=\sigma \\
& \theta \doteq-25=335^{\circ}
\end{aligned}
$$

$=205^{\circ} \therefore$ The Ls are 205 or 375°
f) $\tan \theta=-0.1623$
$\tan ^{-1}(-0.1623)=\theta$
$\theta \div-9$
$\theta \div 351$
$180-9=171$

\therefore The $\angle s$ are 171° or 351°.
h) $\sin \theta=\frac{-0.3154}{=}$
$\sin ^{-1}(-0.3154)=\theta$
$\theta \doteq-18$
$\theta \doteq 342^{\circ}$

$$
\begin{gathered}
O R \\
180-118=198^{\circ}
\end{gathered}
$$

: The apples are 198° or 342°.
j) $\sin \theta=-0.3154$

