Formula Sheet
Grade 9 Academic

Geometric Figure	Perimeter	Area
Rectangle	$P=l+l+w+w$ or $P=2(l+w)$	$A=l w$
Parallelogram	$P=b+b+c+c$ or $P=2(b+c)$	$A=b h$
Triangle	$P=a+b+c$	$A=\frac{b h}{2}$ or $A=\frac{1}{2} b h$
Trapezoid	$P=a+b+c+d$	$A=\frac{(a+b) h}{2}$ or $A=\frac{1}{2}(a+b) h$
Circle	$C=\pi d$ or $C=2 \pi r$	$A=\pi r^{2}$

Geometric Figure	Surface Area	Volume
Cylinder	$\begin{aligned} & A_{\text {base }}=\pi r^{2} \\ & A_{\text {lateral surface }}=2 \pi r h \\ & \begin{aligned} A_{\text {total }} & =2 A_{\text {base }}+A_{\text {lateral surface }} \\ & =2 \pi r^{2}+2 \pi r h \end{aligned} \end{aligned}$	$V=\left(A_{\text {base }}\right)(\text { height })$ $V=\pi r^{2} h$
Sphere	$A=4 \pi r^{2}$	$V=\frac{4}{3} \pi r^{3} \quad \text { or } \quad V=\frac{4 \pi r^{3}}{3}$
Cone	$\begin{aligned} & A_{\text {lateral surface }}=\pi r s \\ & \begin{aligned} & A_{\text {base }}=\pi r^{2} \\ & \begin{aligned} A_{\text {total }} & =A_{\text {lateral surface }}+A_{\text {base }} \\ & =\pi r s+\pi r^{2} \end{aligned} \end{aligned} . \end{aligned}$	$\begin{aligned} & V=\frac{\left(A_{\text {base }}\right)(\text { height })}{3} \\ & V=\frac{1}{3} \pi r^{2} h \quad \text { or } \quad V=\frac{\pi r^{2} h}{3} \end{aligned}$
	$\begin{aligned} & A_{\text {triangle }}=\frac{1}{2} b s \\ & A_{\text {base }}=b^{2} \\ & \begin{aligned} A_{\text {total }} & =4 A_{\text {triangle }}+A_{\text {base }} \\ & =2 b s+b^{2} \end{aligned} \end{aligned}$	$V=\frac{\left(A_{\text {base }}\right)(\text { height })}{3}$ $V=\frac{1}{3} b^{2} h \quad \text { or } \quad V=\frac{b^{2} h}{3}$
Rectangular prism h	$A=2(w h+l w+l h)$	$V=\left(A_{\text {base }}\right)(\text { height })$ $V=l w h$
Triangular prism	$\begin{aligned} & A_{\text {base }}=\frac{1}{2} b l \\ & A_{\text {rectangles }}=a h+b h+c h \\ & \begin{aligned} A_{\text {total }} & =A_{\text {rectangles }}+2 A_{\text {base }} \\ \quad & =a h+b h+c h+b l \end{aligned} \end{aligned}$	$V=\left(A_{\text {base }}\right)(\text { height })$ $V=\frac{1}{2} b l h \quad \text { or } \quad V=\frac{b l h}{2}$

