Properties of Triangles
Ext. a) Verify that $C(4,0)$ is the centroid of $\bigcirc P Q$ triangle.
b) Verify that the centroid divides each median in a $2: 1$ ratio.
a)

$$
\begin{aligned}
C(x, y) & =\left(\frac{0+4+8}{3}, \frac{0+4+(-4)}{3}\right) \\
& =(4,0)
\end{aligned}
$$

b)

$$
\begin{array}{rlrl}
\overline{P C} & =\sqrt{(8-1)^{2}+(-4-0)^{2}} & & 1 \overline{Q C}=4-0 \\
& =\sqrt{16+16} & & 1=4 \\
& =\sqrt{32} & & \overline{C Y}=0-(-2) \\
& =4 \sqrt{2} & & =2 \\
\overline{T C} & =\sqrt{(1-2)^{2}+(0-2)^{2}} & & \overline{Q C}=\frac{4}{2}=\frac{2}{1} \\
& =\sqrt{4+4} \quad \frac{\overline{P C}}{\overline{T C}}=\frac{4 \sqrt{2}}{2 \sqrt{2}}=\frac{2}{1}, \\
& =\sqrt{8} & & \\
& =2 \sqrt{2} & &
\end{array}
$$

$$
\begin{array}{rlrl}
\overline{O C} & =4-\infty \\
& =4 \\
\overline{C R} & =6-4 & \overline{O C} \\
& =2
\end{array}
$$

$$
\begin{aligned}
d_{A T} & =\sqrt{(-10-2)^{2}+(1-(-11))^{2}} \\
& =\sqrt{144+144} \\
& =\sqrt{288} \\
d_{A T} & =12 \sqrt{2}
\end{aligned}
$$

Step 3: Comparison of Slope) $1 \frac{\text { Step } 4 \text { (compere kngths }}{}$

$$
\begin{array}{rlrl}
m_{C O}=\frac{-3-3}{4-(-2)}=\frac{-6}{6}=-1 & d_{C O} & =\sqrt{(-2-4)^{2}+(-3-3)^{2}} \\
m_{A T}=\frac{-11-1}{2-(-10)}=\frac{-12}{12}=-1 & & =\sqrt{36+36} \\
\text { Since } m_{C O}=m_{A T}, & & =\sqrt{72} \\
m_{C O}| | m_{A T} & & d_{C O} & =6 \sqrt{2}
\end{array}
$$

Step 2: Midpoint of $\overline{R T}, O(x, y)$

$$
O(x, y)=\left(\frac{6+2}{2}, \frac{5+(-11)}{2}\right)=(4,-3)
$$

Step: Midpoint of $\overline{A R}, c(x, y)$

$$
C(x, y)=\left(\frac{-10+6}{2}, \frac{1+5}{2}\right)=(-2,3)
$$

Ex. The line segment joining the midpoints of two sides of a triangle is parallel to the third side and half its length. Verify algebraically this property in triangle $A(-10,1), R(6,5), T(2,-11)$
Include a labelled diagram as part of your solution.

Ex 3. Atríangle has vertices $M(-7,-3), T(6,10), H(3,-5)$
i) Verify that:
a. Triangle $\Delta \mu T H$ is a right triangle. V
b. The median from the right angle to the hypotenuse is half as long as the hypotenuse.
ii) Calculate the perimeter.
a) if $m_{M H} \times m_{T H}=-1$, then $\Delta M T H$ is ${ }^{2}$ right triangle

$$
\begin{aligned}
m_{M H+} & =\frac{-3-(-5)}{-7-3}=\frac{-3+5}{-10}=\frac{2}{-10}=-1 / 5 \\
m_{\text {TH }} & =\frac{-5-10}{3-6}=\frac{-15}{-3}=5 \\
& -\frac{1}{5} \times 5=-1 \quad \therefore \text { MT }
\end{aligned}
$$

\therefore AMTH is a right triangle

b) Midpoint of $\overline{M T}, R(x, y)$
$s^{k y y} y$

$$
\left.\begin{array}{l}
\frac{R(x, y)}{E /}=\left(\frac{-7+6}{2}, \frac{-3+10}{2}\right)=(-0.5,3.5) \\
d_{R H}
\end{array}=\sqrt{(-0.5-3)^{2}+(3.5-(-5))^{2}}\right)
$$

step ${ }^{2}$

$$
d_{M T}=\sqrt{(-7-6)^{2}+(-3-10)^{2}} \text { S }
$$

$$
=\sqrt{(-13)^{2}+(-13)^{2}}
$$

$$
\frac{c_{\mu T}}{d_{k+1}}=\frac{13 \sqrt{2}}{6.5 \sqrt{2}}
$$

$$
d_{M T}=13 \sqrt{2}
$$

$$
\frac{d_{\mu T}}{d_{l+t}}=2
$$

$$
\text { c) } \begin{aligned}
P & =d_{M T}+d_{T H}+d_{M t} \\
\frac{3+21}{d_{T H}} & =\sqrt{(6-3)^{2}+(10-(-5))^{2}} \\
& =\sqrt{9+225} \\
& =\sqrt{234} \\
& =3 \sqrt{26}
\end{aligned}
$$

$$
\begin{aligned}
\frac{e_{M H}^{2}}{d_{M H}^{2}} & =\sqrt{(-7-3)^{2}+(-3-(-5))^{2}} \\
& =\sqrt{100+4} \\
& =\sqrt{104} \\
& =2 \sqrt{26}
\end{aligned}
$$

Step 3

$$
\begin{aligned}
P & =13 \sqrt{2}+3 \sqrt{26}+2 \sqrt{26} \\
& =12 \sqrt{2}+5 \sqrt{26}
\end{aligned}
$$

