\qquad

MEASURES OF SPREAD IN DATA STANDARD DEVIATION

What can you infer, justify and conclude about John and Tara's tests scores (seen below)?
(Hint: Calculate the mean, median and mode for each. What do they tell you?)

John's Tests: 76, 45, 83, 68, 64

$$
\text { John's Mean }=67.2
$$

$$
45,64(68), 76,83 \quad \text { Median }=68
$$

$$
\text { Mode }=\text { NONE }
$$

Tara's Tests: 67,70,70,62,62

$$
\begin{aligned}
\text { Tara's } & \text { Mean }=66.2 \\
& \text { Median }=67 \\
& \text { Mode }=62,70
\end{aligned}
$$

These results tell us:

- John has a higher average BuT
- Tara's marks ore more consistent

MEASURES OF SPREAD
MEAN, MEDIAN \& MODE are all good ways to find the centre of your data.
This information is most useful when the sets of data being compared are \qquad similar .
It is also important to find out how much your data is spread out. This gives a lot more insight to data sets that vary from each other.

Example 1
Consider the following two data sets with identical mean and median values.
Why is this information misleading?
Set A: $0,2,2,4,4,6,6,6,8,8,8,8,10,10,10,12,12,14,14,16$

$$
\text { Mean }=-8 \quad \text { Median }=-8
$$

Set B: $4,4,4,6,6,6,8,8,8,10,10,10,12,12,12$

$$
\begin{aligned}
& 4,4,4,0,0,0,0 \\
& \text { Mean }= \\
& \text { 'when graf } \\
& \text { is uniform } \\
& 2 \text { similar. } \\
& \text { ifferently }
\end{aligned}
$$

What is something that can be done to further compare these graphs? LOOK AT THE RANGE IN THE DATA SETS

Range: is the difference between the nighest and lowest numbers.

$$
\begin{array}{rlrl}
\text { A Range } & =\frac{16-0}{16} & B \text { Range: } & =-12-4 \\
& = & =\frac{8}{8}
\end{array}
$$

SET B is more consistent since it hos a smalls range.

Example 2

Twins, Toby and Moby, both work at a local pizza shop. Their manager has decided to give a raise to her best employee. She looks at their data.

Number of Pizzas Made per Shift								
Toby	54	152	180	12	72	126	104	132
Moby	132	104	102	120	86	12	180	96

Who is more deserving of the raise?
Solution: She starts by finding the mean number of pizzas made by each employee and their range.
TOBY
$\operatorname{MEAN}(\mu) \Rightarrow \frac{832}{8}$

$$
\begin{aligned}
\text { MEAN } & =832 / 8 \\
& =140
\end{aligned}
$$

Range

$$
\begin{aligned}
& =180-12 \\
& =168
\end{aligned}
$$

$$
\begin{aligned}
\text { RANGE } & =180-12 \\
& =168
\end{aligned}
$$

These statistics leave both employees equal.
Who do you think is more consistent? \qquad
She decides to calculate the standard deviation for each.
standard Deviation (σ)-BEST choice for measuring spread of DATA
Steps for calculating Standard Deviation (σ) :

1. Find the DIFFERENCE between each value and the mean(average)
2. Square each difference
3. Add up all your onswers from step 2
4. Divide this sum by the number of values in the dote set
5. Take the square root to find your answer

Mathematical Formula: $\quad \sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}}$

$$
\text { where } \begin{aligned}
& \sigma=\text { standard deviation } \\
& \\
& \bar{x}=\text { mean } \quad(\mu \text {-also a symbol uses for mean }) \\
& \\
& n=\text { number of entries } \\
& \\
& \Sigma=\text { sum }
\end{aligned}
$$

Day 5: Standard Deviation

Date: \qquad
Unit 3: Statistics

Standard deviation for Moby

$$
\text { mean }=140
$$

Number of Pizzas x	$x-\bar{x}$	$(x-\bar{x})^{2}$
132	$132-140=-8$	$(-8)^{2}=64$
104	$104-140=-36$	$(-36)^{2}=1296$
102	$102-140=-38$	$(-38)^{2}=1444$
120	$120-140=-20$	$(-20)^{2}=400$
86	$86-140=-54$	$(-54)^{2}=2916$
12	$12-140=-128$	$(-128)^{2}=16384$
180	$180-140=40$	1600
96	$96-140=-44$	1936
	Total $=$	26040

$$
\begin{aligned}
\sigma & =\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-x\right)^{2}}{n}} \\
\begin{aligned}
S . d & =\sigma
\end{aligned} & =\sqrt{\frac{31704}{8}} \\
& =\sqrt{3963} \\
& =62.95
\end{aligned}
$$

In order for this standard deviation to be significant, you must compare it to another data set.

$$
\begin{aligned}
\sigma & =\sqrt{\frac{26040}{8}} \\
& =\sqrt{3255} \\
& =57.05
\end{aligned}
$$

Since the 5.d. for Moby is less, his data (PIzzA PRODUCTION) is less spread out. he is more consistent

\therefore He is more deserving of the coir.

MEASURES OF SPREAD - PRACTICE
 (please answer on a separate sheet of paper)

1. True or False? The standard deviation cannot be a negative.
2. Calculate the range, variance and the standard deviation of the following data: $4,8,6,3,12,9,7,6$
3. The machine packaging cookies has been considered defective. The packages are labelled as containing 150 g . A sample of 15 packages was selected and the masses are given.
$145,151,152,150,147,152,149,148,153,150,146,152,148,149,151$
a) Calculate the mean.
b) If any packages are deviate than 2.2 g from the mean, it is defective. How many are defective?
c) Should the machine be fixed?
4. A group of student landscapers are to keep track of their own weekly hours. They are as follows: 44, 52, 43, 39, 42, 41, 38, 43, 46, 45, 44, 39, 40, 42, 45
a) Find the range.
b) Find the mean.
c) Find the standard deviation.
d) What can be said about the entry of 52 hours/week?
e) Calculate the standard deviation again without the 52 hours/week entry.
5. The sale prices of the last 10 homes sold in 1985 were: $\$ 198000, \$ 185000, \$ 205200$, \$225 300, \$206 700, \$201 850, \$200 000, \$189000, \$192 100, \$200 400.
a) What is the average sale price?
b) What is the range of sale prices?
c) What is the standard deviation?
d) Do you think that a price of $\$ 240000$ would be considered unusual? Why or why not?

Some Solutions

2. a) range $=9$; s.d. $=2.85$
3. a) 149.5 g b) 7
4. a) 14 hrs b) 42.9 hrs c) 3.50 hrs
e) 2.52 hrs
5. a) $\$ 200355.00$
b) $\$ 40300$
c) $\$ 11189.04$

