\qquad Date: \qquad
Performance Task Quadratics II

Know	App	Think	Comm
11	15	8	10

SHOW YOUR WORK FOR FULL MARKS
KNOWLEDGE \& UDERSTANDING

1. Write the expression $y=-2(x+3)^{2}+12$ in standard form.

$$
\begin{aligned}
& y=-2(x+3)(x+3)+12 \quad \text { FOIL } \\
& y=-2\left(x^{2}+3 x+3 x+9\right)+12 \text { distribute }-2
\end{aligned}
$$

(1) Square the brockets
multiply each term by -2
$y=-2 x^{2}-6 x-6 x-18+12 \quad$ collect like terms
(3) collect like tel ms
$y=-2 x^{2}-12 x-6 \longrightarrow$ standard form

$$
\begin{aligned}
& \text { 2. Factor FULLY } \\
& \text { a) a) } x^{2}-9 x+18 \quad 2[-3] \times 6=18 \\
& \text { b) } 4 x^{2}-8 x-60 \\
& \text { (1) GLF first }=4 \\
& =(x-3)(x-6) \quad|-3|+|-6|=-9 \\
& =4\left(\frac{4 x^{2}}{4}-\frac{8 x}{4}-\frac{60}{4}\right) \\
& \text { (2) foetor } \\
& =4\left(x^{2}-2 x-15\right) \\
& \overline{3 \mid} \times \angle-5=-15 \\
& =3\left(\frac{3 x^{2}}{3}-\frac{48}{3}\right) \\
& =4(x-3)(x-5) \\
& 3|+|-5=-2 \\
& =3\left(x^{2}-16\right) \\
& =3\left(x^{2}+0 x-16\right) \quad-1-4 \times \angle 4=-16 \\
& =3(x-4)(x+4) \quad-4)+\angle 4=0
\end{aligned}
$$

APPLICATION
3. Write a SIMPLIFIED expression for the area of the shaded region. (3)
Remember to simplify as much as possible (Area $=$ length \times width $)$
$x+4$ Area of The shaded region = Total Area - The area of the square (1) inside ,2

$$
\begin{aligned}
& \times \quad \text { (1) Total } \\
& \text { Area } \\
&=(x+4)(x+4) \\
&=x^{2}+4 x+4 x+16 \\
&=x^{2}+8 x+16
\end{aligned}
$$

(2)

$$
\begin{aligned}
\text { Smaller } & =x \cdot x \\
\text { square } & =x^{2}
\end{aligned}
$$

$$
\therefore \text { Shaded region }=x^{2}+8 x+16-x^{2}=8 x+10
$$

\qquad
\qquad
4. The path of a ball that was dropped and bounced can be modelled by the relation $y=x^{2}-6 x+9$, where x is the horizontal distance travelled and y is the height, both in metres.
a) Express the relation in intercept (factored) form. 2

$$
\begin{array}{rlrl}
y & =x^{2}-6 x+9 & \boxed{-3} \times-3=9 \\
& =(x-3)(x-3) & & \boxed{-3}+-3
\end{array}
$$

b) Find the zeros (x-intercepts) of the relation. (2)

$$
\begin{array}{rr}
x-3=0 & x-3=0 \\
x=3 & x=3
\end{array}
$$

c) Find the axis of symmetry (show your work).

$$
\begin{gathered}
x=\frac{3+3}{2}=\frac{6}{2}=3 \\
x=3
\end{gathered}
$$

d) What is the y-intercept AND its reflection point? Express each as coordinate points. (2)

$$
y \text {-int is }(0,9) \text { and its reflection point is }(6,9)
$$

e) Find the optimal value. (2)

$$
\begin{aligned}
& y=(x-3)(x-3) \quad \text { sub "3" for } x \\
& y=(3-3)(3-3) \\
& y=0
\end{aligned}
$$

f) What is the vertex? (1)

$$
V(3,0)
$$

g) Graph the parabola on the following grid. Hint: Use the step pattern to help draw an accurate graph.

$$
\begin{aligned}
\text { Step } & a \times(1,3,5) \\
= & 1,3,5
\end{aligned}
$$

\qquad
\qquad

THINKING

5. Write the equation for the following quadratic relation in standard form.
$a=-2$ and with a vertex at $(-3,4)$

$$
\begin{aligned}
y & =a(x-h)^{2}+k \\
y & =-2(x-(-3))^{2}+4 \\
& =-2(x+3)^{2}+4 \\
& =-2(x+3)(x+3)+4 \\
& =-2\left(x^{2}+3 x+3 x+9\right)-14 \\
& =-2 x^{2}-6 x-6 x-18+4 \\
& =-2 x^{2}-12 x-14
\end{aligned}
$$

6. A football is kicked from ground level. Its path is given by the relation $h=-4.8 t^{2}+43.2 t$ where h is the ball's height above the ground, in metres, and t is the time in seconds.
a) Write the relation in factored form. 2

$$
\begin{aligned}
h & =-4.8 t^{2}+43.2 t \quad G C F=-4.8 t \\
& =-4.8 t(t-9)
\end{aligned}
$$

b) Find the zeros (x-intercepts) of the relation. (2)

$$
\begin{array}{lr}
\frac{-4.3 t}{-4.8}=\frac{0}{-4.8} & t-9=0 \\
t=0 & t=9
\end{array}
$$

c) When did the ball hit the ground? (1)

It hit the ground at 9 seconds

COMMUNICATION

7. State the steps needed to convert a quadratic relation in vertex from to standard form. (3) You may want to make up an example to help you explain. ** 3 marks means write 3 points **
\qquad Date: \qquad
8. List the four types of factoring learned in this unit AND provide an example of each. The example may not have been used already in this test.
Solve each of your examples to show the equation in factored form. 4
\qquad
\qquad
9. What do you know about the graph given each form of a quadratic relation?

The vertex form $y=a(x-h)^{2}+k$ tells me...

- the coordmotes of the vertex
- direction of sonny
- transformatilens

The standard form $y=a x^{2}+b x+c$ tells me...

$$
\begin{aligned}
& \text { - y-int (c) } \\
& \text { - direction of opening (a) }
\end{aligned}
$$

The factored (intercept) form $y=a(x-r)(x-s)$ tells me...
$-x$ intercepts r and s

- direction of opening (a)

Which form of the quadratic equation do you prefer? Explain why?

