1) One number is four times a second number. If the sum of the two numbers is thirty, find the numbers. Let " n " be file first number.

$1^{\text {st }}$	$2^{\text {nd }}$
n	$2 n$

$$
\begin{aligned}
n+4 n & =30 \\
\frac{5 n}{5} & =\frac{30}{5} \\
\frac{n}{n} & =6
\end{aligned}
$$

\therefore Numbers or 6 and 24 .
2) The difference between two numbers is 16 . Five times the smaller is the same as 8 less than twice the larger. Find the numbers.
Let "s" be the smiler number, larger - smaller $=16$

$$
\begin{array}{rlrl}
\text { larger smaller } & \text { (2) } 5 s_{s} & =2(16+s)-8 & \text { larger }=16+s \\
\hline 16+5 & 5 s=32+2 s-8 \\
\frac{3 s}{-25} & =\frac{24}{3} & \therefore \text { Numbers are } 8 \text { and } 24
\end{array}
$$

3) The sum of two numbers is the same as four times the smaller number. If twice the larger is decreased by the smaller, the result is 30 . Find the numbers.

$$
\begin{array}{r}
\begin{array}{r}
\text { aet "s" be the smaller. }
\end{array} \\
\begin{array}{c}
\text { larger } \\
\hline 3 s \\
\hline \text { smaller- }
\end{array} \\
2(3 s)-s=30 \\
\frac{5 s}{5}=\frac{30}{5} \\
s=6
\end{array} \quad \therefore \begin{array}{r}
\text { Larger }+ \text { smaller }=4 \text { smaller } \\
\text { larger }+5^{-s}=4 s^{-s} \\
\text { larger }=3 s
\end{array}
$$

4) Determine three consecutive even integers whose sum is 456 .

Let " n " represent the first number

\therefore The numbers are 150,152 and 154 .

DIMENSION PROBLEMS
4) The length of a rectangle is 4 meters longer than the width. If the perimeter of the rectangle is 128 meters, what are the dimensions of the rectangle?

Let "w" be the width

$$
\begin{aligned}
2(w)+2(w+4) & =128 \\
2 w+2 w+8 & =128 \\
-8 & -8 \\
\frac{4 w}{4} & =\frac{120}{4} \\
2 w & =35
\end{aligned}
$$

5) The height of a triangle is thrice its base. If the area is $\& \mathrm{~m}^{2}$, calculate the height. AREA = Base x Height $/ 2$
 Let " b " be the base

$$
\begin{aligned}
2 \cdot \frac{b \cdot 3 b}{2} & =24 \cdot 2 \\
\frac{3 b^{2}}{3} & =\frac{48}{3} \\
\sqrt[3]{b^{2}} & =\text { itteight } \\
b & =4
\end{aligned}
$$

6) The length of a rectangle is four times bigger than its width. If the area is $100 \mathrm{~m}^{2}$. Calculate the perimeter.

Let " w " represent the width

$$
\begin{aligned}
w \cdot 4 w & =100 \\
\frac{4 w^{2}}{4} & =\frac{100}{4} \\
\sqrt{w^{2}} & =\sqrt{25} \\
w & =5
\end{aligned}
$$

AGE PROBLEMS
7) Justin is six years older than his sister, and the sum of their ages is 32 . Determine Justin's age algebraically. Let "s" rep sister's age

Justin	Sister
$s+6$	s

$$
\begin{aligned}
s+6+s & =32 \\
2 s+6^{-6} & =32^{-6} \\
\frac{2 s}{2} & =\frac{26}{2} \\
s & =13
\end{aligned}
$$

$$
\therefore \text { Justin is } 19 \text { years old. }
$$

Page 2 of 4
8) Cameo is 5 years older than Isabella. In 6 years, the sum of their ages will be 35 years. How old is each person Let $a^{\prime \prime}$ be Isabelle's age now
9) In 5 years I would be three times as old as I was 25 years ago. How old am I?

now	n
in 5 yeas	$n+5$
25 yeas apo	$n-25$

Let "n" be my age.

$$
\begin{aligned}
& n+5=3(n-25) \\
& n+5=3 n-75 \\
&-n \\
&+75=2 n-75 \\
& \frac{80}{2}=\frac{2 n}{2} \\
& n=40
\end{aligned}
$$

MONEY PROBLEMS
10) There are 15 fewer quarters than dimes in a parking meter. The value of the coins is $\$ 15.50$. How many dimes are there?

Let "d" be number of dimes

11) A coin-sorting machine contains nickels, dimes and quarters worth $\$ 5.50$. There are 3 times as many nickels as dimes and 2 more quarters than dimes. How many of each type of coin are there?
bet "d" rep \# of dimes
\#

nickels	dimes	quarter
$3 d$	d	$d+2$
$5(3 d)$	$10(d)$	$25(d+2)$

(in cents)

$$
d=10
$$

\therefore There are 30 nickels, 10 dimes and 12 quarters.
12) A sporting goods store ordered 65 hats at a cost of $\$ 900$. Some hats cost $\$ 15$ and others cost $\$ 12$. How many of each type of hat was ordered?

Let " n " be the number of nat A hat A
\$15 $A \mid B^{\text {₹12 }}$ Let " n " be the number of nat A

$$
\begin{array}{rl}
15 n+\overparen{2(65-n}) & =900 \\
15 n+780-12 n & =900 \\
-780 & \therefore 40 \text { of hat } A \\
-780 & 25 \text { of hat } B .
\end{array}
$$

$$
\frac{3 n}{3}=\frac{120}{3}
$$

TIME-DISTANCE PROBLEMS

$$
n=40
$$

13) A plane left Montreal for Calgary, a distance of 3000 km , travelling at $800 \mathrm{~km} / \mathrm{h}$. At the same time, a plane left Calgary for Montreal travelling at $700 \mathrm{~km} / \mathrm{h}$. How long after take-off did the planes pass each other? $700 \mathrm{lcm} / \mathrm{h}$ $800 \mathrm{~km} / \mathrm{h}$
Let " t " rep time travelled
time

M	C
t	t
800	700
$800 t$	$700 t$

distance 800t 700t

14) Two cars left a service centre at the same time. One car travelled in one direction at $75 \mathrm{~km}\left(l_{1}\right.$. The other car travelled in the opposite direction at $85 \mathrm{~km} / \mathrm{h}$. After how long were they 600 km apart?

Let "f" rep_time travel			
time	t	t	
speed	75	85	
distance	$75+$	$85 t$	

MIXTURE PROBLEMS

15) Walnuts sell for $\$ 6.75 / \mathrm{kg}$ and Cashews sell for $\$ 10.20 / \mathrm{kg}$. How much of each would there be in 120 kg mixture that sells for $\$ 8.75 / \mathrm{kg}$?

$$
\begin{aligned}
& \text { ht "c" rep weight of cashemes } \\
& \left.\begin{array}{l}
\text { weight } \\
\$ 6.75 / 10
\end{array}\right)+\binom{120-c}{+10.20 / 10}=\left(\begin{array}{c}
\text { mixture } \\
120 \\
\$ 8.75 / \mathrm{mg}
\end{array}\right) \\
& 6.75(120-c)+10.20 c=8.75(120) \longleftarrow \text { total cost } \\
& 810-6.75 c+10.20 c=1050-810 \quad c=70 .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3.45 c}{3.45}=\frac{240}{3.45} \\
& \text { and } 50 \mathrm{lco} \text { of wsinuts. }
\end{aligned}
$$

