Similar Triangles

1. If $A B$ is parallel to $P Q$,
a) how do you know that $\triangle C A B \sim \triangle C P Q$?
b) determine the length of x and y.
a) Since $\overline{A B} \backslash \overline{P Q}, \angle A=\angle P$ and $\angle B=\angle Q$
b) we have AAA condition with elifferent side lengths

2. Leron is attempting to swim across a river. He needs to find out the distance across, so he draws the following scale diagram and determines the measurements on it. Using the diagram shown, determine how far it is across the river to the nearest metre.
$\triangle A B C \sim \triangle D E F$

$\frac{x}{24}=\frac{5 \$}{122}$
$2 x=24 \cdot 5$
$x=60$
3. Calculate the height of GI Joe's roof.

$$
\begin{aligned}
& \text { Area } \Delta F 6 H=\frac{13 . h}{2} \\
& \frac{13 h}{2}=\frac{60}{2} \\
& \frac{26 h}{26}=\frac{120}{26} \\
& h=\frac{120}{26}=\frac{60}{13} \quad \therefore h=\frac{60}{13}
\end{aligned}
$$

\qquad
5. A 6 m ladder is leaning against a vertical wall with its foot 3.5 m away from the wall. Another ladder 7.5 m long is leaning against the wall, parallel to the first ladder. What distance is the foot of the

Trigonometric Ratios - Sine, Cosine, and Tangent

6. Label the hypotenuse (hyp), opposite (opp) and adjacent (adj) sides for marked angles.

7. State the 3 primary trig ratios using the hint below

SOH
$\sin \theta=\frac{O}{H}$

CAH
$\cos \theta=\frac{A}{H}$

TOA
$\tan \theta=\frac{O}{A}$
8. State the three primary trig ratios for the indicated angle in the following triangles.

Solving for Unknown Angle Using Trig Ratios

9. Find the indicated angle to the nearest degree.

SOL CAM TOM

5 O
$\tan x=\frac{5}{8}$

$$
\tan ^{-1}\left(\frac{5}{8}\right)^{8}=x \quad x=32^{2} \quad \sin ^{-1}\left(\frac{4}{17}\right)=x
$$

10. Solve the following triangle. Round each side fifth to the nearest unit and angles to the nearest degree.

$$
\begin{aligned}
& \begin{array}{r}
\alpha+30+90=180 \\
\alpha=60^{\circ}
\end{array} \\
& \tan 30^{\circ}=\frac{0}{4} \\
& \tan 30^{\circ}=\frac{a}{20} \\
& a=20 \cdot \tan 30^{\circ} \\
& a=11.5 \\
& \cos 30^{\circ}=\frac{A}{H} \\
& \cos 30^{\circ}=\frac{20}{c} \\
& C=\frac{20}{\cos 30^{\circ}} \\
& C=23^{\circ}
\end{aligned}
$$

11. Captain Jack is navigating his ship to Port Harbour, which is directly north of the ship's location. To compensate for an easterly current, he aims for a point on shore that is 5 km west of Port Harbour. Assuming that the point on shore is 20 km from his position now, at what bearing must Jack head his ship? Bearing: Clockwise angle from NORTH.
$\cos \alpha=\frac{5}{20}$
$\cos ^{-1}\left(\frac{1}{4}\right)=\alpha$
$\alpha=75.5^{\circ}$
Beatriz $=90+75.5$

Solving for Unknown Side Length Using Trig Ratios
9. In $\triangle J K L$ find the length of x

TBA

0

$$
\tan 30^{\circ}=\frac{10}{x}
$$

$$
\begin{aligned}
& x=\frac{10}{\tan 30^{\circ}} \\
& x=17.3
\end{aligned}
$$

10. In $\triangle A B C$ find the length of x

From a point on the ground 15 feet from the foot of a tree, the angle of elevation of the top of the tree is 21°. Find to the nearest foot, the height of the tree.

