EXAM REVIEW

1. Evaluate $-(4)+(3)(-3)=-4-9=-13$,
2. The expression $7 \times 7 \times 7 \times 7$ written in power form is: 7^{4}
3. Simplify the following expressions using power rules:
a) $\left(4 v^{2}\right)^{3}=4^{1 \cdot 3} v^{2 \cdot 3}=4^{3} \cdot v^{6}$
b) $\frac{45 x^{5} y^{2}}{-9 x y^{2}}=-5 x^{5-1} y^{2-2}=-5 x^{4} y^{0}=-5 x^{4}$
c) $(3 w)\left(-2 x w^{2}\right)=-6 w^{1+2} x=-6 w^{3} x$
4. The equivalent of 4^{12} as a power with base 2 is: $(4)^{12}=\left(2^{2}\right)^{12}=2^{2 \cdot 12}=2^{24}$
5. Simplify $\left(8 e^{2}-7 e\right)-\left(4 e-3 e^{2}\right)=8 e^{2}-7 e+\left(-4 e+3 e^{2}\right)=8 e^{2}-7 e-4 e+3 e^{2}$
6. Expand $-4 g(3 g+4 r g-8 r)=-12 g^{2}-14 r g^{2}+32 g r$
7. Write the coefficient of the second term in the polynomial
$5 r^{2} \underbrace{-6 y}_{2^{n 0}}+5 \Rightarrow-6$
8. The degree of the expression 4 er 2) $9 r f^{2}$ is \Rightarrow Degree is $e^{1} r^{5} \Rightarrow 1+5 \Rightarrow 6 / /$
9. If $r-7=-2$ then the value of r is: $\begin{gathered}r-7^{+7}=-2^{+7} \\ r=5\end{gathered}$
10. If $\frac{n}{4}=\frac{-3}{1}$ then the value of n is: $n=-12$
11. If $-9 k=36$ then the value of k is: $\frac{-9 k}{-9}=\frac{36}{-9} \quad k=-4$
12. Write an algebraic expression to represent twice a number decreased by three.

$$
2 x-3
$$

14. For the line $y=-4 x+3$:
a) the slope is -4
b) the y-intercept is +3
c) the slope of a perpendicular line would be:

$$
1 / 4
$$

15. All horizontal lines have a slope of

$$
0
$$

16. All lines that pass through the origin have a y-intercept of O
17. Does the point $(-3,5)$ lie on the line $y=-2 x-1$?

To check, sub" "-3" ${ }^{\text {to into }}$ the equation, If you get " 5 " for " y ", yes it's on the line. $\begin{aligned} y & =-2(-3)-1 \quad(-3,5) \vee \therefore Y / S, \text { it is on the live. } \\ & =6-1 \\ & =5\end{aligned}$
18. A rectangular prism has $l=12 \mathrm{~cm}, w=4 \mathrm{~cm}, h=7 \mathrm{~cm}$.

Find the volume. $\quad V=12 \cdot 4 \cdot 7$

$$
=336 \mathrm{~cm}^{3}
$$

19. A triangle has two interior angles equal to 56° and 98°.

Find the measure of the third interior angle.

$$
\begin{aligned}
x+98+56 & =180 \quad \text { SAT }+ \\
x+154^{-154} & =180^{-154} \\
x & =26
\end{aligned}
$$

PART B: SHORT ANSWERS

1. Evaluate. Leave your answer as a fraction in lowest terms (no decimals).

$$
\begin{array}{ll}
& \frac{-2}{5}+1 \frac{1}{3} \\
= & \frac{-2}{5}+\frac{1 \cdot 3+1}{3} \\
= & -\frac{2 \cdot 3}{5 \cdot 3}+\frac{4 \cdot 5}{3 \cdot 5}
\end{array} \quad \rightarrow=\frac{-6}{15}+\frac{20}{15}
$$

3. Solve for $n: \quad+83$

$$
\begin{aligned}
3 n-57 & =5 n-83^{+83} \\
3 n+26^{-3 n} & =5 n^{-3 n} \\
\frac{26}{2} & =\frac{2 n}{2} \\
13 & =n
\end{aligned}
$$

4. Expand and simplify.

$$
\begin{aligned}
4(3 f-5)-5(2-3 f) & =12 f-20-10+19 f \\
& =27 f-30
\end{aligned}
$$

5. Determine the x-intercept of the line $3 x-8 y-24=0$
sub

$$
\begin{array}{r}
y=0 \quad 3 x-8(0)-24=0 \\
3 x-24^{+24}=0^{+24} \\
\frac{3 x}{3}=\frac{24}{3} \\
x=8
\end{array}
$$

7. Calculate the slope of a line passing through $A(-2,4)$ and $B(1,6)$.

$$
m=\frac{6-4}{1-(-2)}=\frac{2}{3}
$$

8. Timberlane Athletic Club offers gym memberships for $\$ 70$ a month with an initiation fee of $\$ 250$.

Show the equation that represents the total cost, C , of joining the gym where m represents the number of months.

$$
C=70 m+250
$$

FULL SOLUTIONS

1. Solve.

$$
\begin{aligned}
\overparen{3(x-2)}-4=6 x+2
\end{aligned} \Rightarrow \begin{aligned}
3 x-6-4 & =6 x+2 \\
3 x-10^{-2} & =6 x+2^{-2} \\
3 x-12^{-3 x} & =6 x^{-3 x}
\end{aligned} \quad \begin{aligned}
& \frac{-12}{3}=\frac{3 x}{3} \\
& x=-4
\end{aligned}
$$

2. Solve the following equation.

$$
\begin{aligned}
\Rightarrow 2(x+1) & =4(x+14) \\
2 x+2 & =4 x+56 \\
-54 & =2 x \\
-27 & =x
\end{aligned}
$$

3. Find the dimensions of a rectangle with a perimeter of 240 m , if the length is 4 m longer than the width.

4. A vending machine contains $\$ 27.70$ made up of dimes and quarters. If there are 199 coins in all, how many dimes and quarters are there?
5. Determine the equation of the line in slope y-intercept form which passes through $(4,-6)$ and $(-3,1)$.
