\qquad

LABELLING TRIANGLES

THE THREE PRIMARY TRIG RATIOS
The three primary trigonometric ratios are:

1. Determine the following ratios for the given right triangle.
a. $\cos A=\frac{A}{H}$

$$
\begin{aligned}
& =\frac{6}{10} \\
& =3 / 5
\end{aligned}
$$

b. $\tan C=\frac{O}{A}$

$$
\begin{aligned}
& =\frac{6}{8} \\
& =3 / 4
\end{aligned}
$$

2. Using your calculator, determine each trigonometric ratio to FOUR decimal places.
a. $\cos 32^{\circ}=\underline{0.8480}$
b. $\tan 75^{\circ}=3.7321$
c. $\sin 25^{\circ} \doteq 0.4226$
3. Determine the length of x in each triangle.

4. Solve the triangle. (Solve in this context means to find out every unknown: sides and angles.)

$$
\begin{aligned}
& \frac{\operatorname{solving} \text { for } q}{\frac{\sin 57}{1}=\frac{35}{9} \cdot \text { flifeach }} \text { side } \\
& 35 \cdot \frac{1}{\sin 57}=\frac{q}{35}-35 \\
& 41.7=q
\end{aligned}
$$

$$
\begin{aligned}
p^{2} & =(41.7)^{2}-(35)^{2} \\
\sqrt{p^{2}} & =513.89 \\
p & =22.7
\end{aligned}
$$

Solving for α

$$
\begin{aligned}
& \alpha=180-90-57 \\
& \alpha=33^{\circ}
\end{aligned}
$$

Angle of Elevation \& Depression

Terminology:

Ex1. A plane is coming down for a landing at YYZ. The angle of depression is 22°. The plane is 350 m from the ground. Determine the distance from the plane to the airport.

Ex. A carpenter leans a ladder against a wall at an angle of 68°. The distance from the foot of the ladder to the wall is 36 inches. Draw a diagram with the given information.
a. How long is the ladder?
b. How high up is the ladder?

$$
\text { b) } h \underset{68 \lambda}{ } \tan 68=\frac{h}{36} h
$$

inches high up from the 3 or mu p
\therefore The ladder is 96.1 incheslong and 89.1 inches high up page 3 of 4 u

DETERMINING ANGLES USING TRIG RATIOS

1. Determine the measure of each angle to the nearest degree.

2. Calculate the measure of $\angle A$ to the nearest degree.

$$
\begin{aligned}
\tan \theta & =\frac{D}{A} \\
\tan \theta & =\frac{7}{4} \\
\tan ^{-1}(7 / 4) & =\theta \\
\theta & =60
\end{aligned}
$$

$$
\therefore \text { It's } 60^{\circ} \text {. }
$$

3. Solve the triangle. (ROUNDING: Angles nearest degree, Sides one decimal place)

$$
\begin{aligned}
& \cos \theta=\frac{13.2}{28.4} \begin{array}{l}
\frac{\alpha=180-90-62}{\alpha-281} \\
\cos ^{-1}\left(\frac{13.2}{28.4}\right)=\theta \\
\theta=62^{\circ}
\end{array} \\
& \begin{array}{l}
r^{2}=(28.4)^{2}-(13.2)^{2} \\
r^{2}=632.32
\end{array} \\
& \quad \begin{aligned}
r=25.1
\end{aligned} R \text { is } 28^{\circ}, \theta \text { is } 62^{\circ} \text { and } r \text { is } 25.1 \mathrm{~cm} .
\end{aligned}
$$

4. Suppose a tree 50 feet in height casts a shadow of length 60 feet. What is the angle of elevation from the end of the shadow to the top of the tree with respect to the ground?

\therefore The angle of elevation is 40°.
