In 1637, the famous mathematician Rene Descartes devised a method identifying a point's position on a flat surface. He thought of using two intersecting numbered lines known as the x and y axes (pronounced "axees" - this is the plural of "axis") in order to plot points. The location of each point could then be identified by a pair of numbers know as the point's coordinates.
This Cartesian plane, and its invention changed mathematics forever. In analytic geometry we can represent points, lines, circles and other curves using Descartes' system.

1. There are two axes, the \qquad
 the \qquad $y-a x_{i}$. Place the name of the axis at its positive end. Pair
2. Label each axis with a scale numbered at each fourth square.
3. The Cartesian plane is divided into \qquad 4 regions called \qquad QUADRANTS .
Number them in a counter-clockwise direction starting at the top right with Q1, Q2,... etc. pQ/anthes is
4. Points are written with the \qquad co-ordinate first, and the \qquad coordinate second inside brackets. This is called an ordered pair. Label ordered pairs onto the points A to F.
5. The origin is the point where the axes intersect. The coordinates of the origin are \qquad $(0,0)$.
6. State where the points have:
a) x coordinate 0

g) y coordinate 3

