MCR3U1 Date:
Day 3: Max/ Min from the Factored Form Chapter 3: Quadratic Relations

REVIEW
Ben and Jen have 24 m of fencing to enclose a vegetable garden at the back of their house. Find the
dimensions of the rectangular garden that would maximize the area using algebra.
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B. Using the factored form to find the coordinates of the vertex of a quadratic function f(x) = —x* +12x

Step 1:
a) Find the x-intercepts by either GCFing, factoring or using the quadratic formula.
b) PLOT these points and draw the axis of symmetry.

‘lﬂ(X): "5(()(-'{2) =0 and x =12

Step 2:
If you notice, the “x” coordinate of the vertex is halfway between
the x-intercepts. The equation of axis of symmetry is also the “x”
coordinate of the vertex. In a nutshell, just AVERAGE the ZEROS.
x = 9+
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Step 3:

Vertex is a point on the plane with “x” and “y” coordinates. You
know the “x” coordinate; all you need to do is plug this value &
for x to determine “y” coordinate.
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CONCLUSION:
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FALLING OBJECT

A ball is kicked and follows the path modeled by h(t) = _5t2 +10t, where the height above ground, h, is in
metres, and the time, t, is in seconds. & I |

averaging the zeros. A,
N b) Sketch the graph of the path of the ball. U 4
c) How long does it take before the ball hits the ground? .
d) State the domain and the range of the function. 00{)(
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Determine the x-intercepts, the equation of the axis of symmetry, the coordin‘gtes of the vertex, and the y-
intercept then sketch the graph of the quadratic function f (x) = x* —2x 8.
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PRACTICE

1) Determine the vertex by averaging the zeros.
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2. The path of a golf ball can be modelled by the function h=-0.003d* +0.6d , where h is the height of the
golf ball, in metres, and d is the horizontal distance travelled, in metres. What is the maximum height of the
golf ball? At what horizontal distance does the golf ball reach its maximum height?

3. A ball is thrown vertically upward off the roof of a 34 m tall building. The height of the ball h in metres,

can be approximated by the function h =—5t +10t + 34 where t is the time in seconds, after the ball is
thrown.

a) Sketch the graph.
b) How high is the ball after 2 s?
c) Find the maximum height of the ball.

4. A tennis ball is thrown up into the air. Its height h in metres after t seconds, is given by the function
h=-4.9t" +19.6t + 2.1

a) Sketch the graph.
b) Determine the maximum height of the ball and the time it takes to reach it.
c) How high is the ball after 3 s?

5. A rectangular lot is bordered on one side by a stream and on the other three sides by 600 metres of
fencing. Determine the dimensions of the lot if its area is a maximum.

6. A lifeguard marks off a rectangular swimming area at a beach with 200 m of rope. What is the greatest
area of water she can enclose if the rope only makes 3 sides of the rectangle? (No rope is needed along
the shore side of the swimming area.)

7. Determine the maximum possible area for a rectangle with perimeter 20



v) . The path of a golf ball can be modelled by the function 4 = ~0.003d” +0.6d , where h is the height of the golf
ball, in metres, and d is the horizontal distance travelled, in metres. What is the maximum height of the golf ball?
At what horizontal distance does the golf ball reach its maximum height?
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3 - . A ball is thrown vertically upward off the roof of a 34 m tall building. The height of the ball / in metres, can be
approximated by the function A = ~51% + 101 + 34 where £ is the time in seconds, after the ball is thrown.
a) Sketch the graph.
b) How high is the ball after 2 s?

c% Find the maximum height of the ball,
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A tennis ball is thrown up into the air. Its height /# in metres after ¢ seconds, is given by the function

4 . _
h=—-49¢* +19.61 + 2.1
\ a) Sketch the graph.
\ b) Determine the maximum height of the ball and the time it takes to reach it
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5. A rectangular lot is bordered on one side by a stream and on the other three sides by 600 metres of
fencing. Determine the dimensions of the lot if its area is a maximum
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6. A lifeguard marks off a rectangular swimming area at a beach with 200 m of rope. What is the greatest
area of water she can enclose if the rope only makes 3 sides of the rectangle? (No rope is needed along
the shore side of the swimming area.) |¢n3-}-h

%}:e'l' uwn Nf’ w'.d,H,\ Qno] uLn |C/B‘Hs A S
Q-UO -+ l‘:: 200

(L= 200-2.0
sx/~2} Shor
Areq = L w

200 -2 =O I N
w Arca = W (200-2w0

wW = (6>

- ':bal'd'l h,

=200w _'Q'wl

|
\
K = Ui_wo/;(jzso(‘lw'?-’%) \ _ -2wt 4200w

2 :SQCIOO) :-l(wl" [0@03-71;-’5‘0
= _ 5002 (" = 0=
‘ =-2 (w"-loow 202 —2’?0\:9

S Vertex i (;0] 3'000)

The may aren (s 5000m* ‘

=-2( W= 190w +1509)+50.00
- -2/ w-50) "4 5900

Vo Veviex (§O) 1‘000)

Tlhe pvax pes 1y SOOIM? .

7. Determine the maximum possible area for a rectangle with perimeter 20
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